- 目录
-
第1篇初中数学二次函数知识点总结 第2篇高中二次函数知识点总结 第3篇锐角三角函数知识点总结 第4篇高三数学复习三角函数知识点总结 第5篇八年级数学一次函数知识点小总结 第6篇初中数学三角函数知识点总结归纳 第7篇初中数学一次函数知识点总结 第8篇初中数学一次函数知识点归纳的总结 第9篇高一数学第2章指数函数对数函数和幂函数知识点总结 第10篇一次函数知识点总结 第11篇初中数学知识总结:正比例函数知识总结 第12篇任意角的三角函数知识点总结 第13篇高一数学二次函数知识点总结 第14篇二次函数知识点总结 第15篇高一数学幂函数知识点总结 第16篇初中数学反比例函数知识点总结
【第1篇 初中数学二次函数知识点总结
I.定义与定义表达式
一般地,自变量_和因变量y之间存在如下关系:y=a_^2+b_+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为_的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)
顶点式:y=a(_-h)^2+k [抛物线的顶点P(h,k)]
交点式:y=a(_-_?)(_-_ ?) [仅限于与_轴有交点A(_? ,0)和 B(_?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=_^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线 _ = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)
2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在_轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与_轴交点个数
Δ= b^2-4ac>0时,抛物线与_轴有2个交点。
Δ= b^2-4ac=0时,抛物线与_轴有1个交点。
Δ= b^2-4ac<0时,抛物线与_轴没有交点。X的取值是虚数(_= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=a_^2+b_+c,
当y=0时,二次函数为关于_的一元二次方程(以下称方程),即a_^2+b_+c=0
此时,函数图像与_轴有无交点即方程有无实数根。函数与_轴交点的横坐标即为方程的根。
1.二次函数y=a_^2,y=a(_-h)^2,y=a(_-h)^2 +k,y=a_^2+b_+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴:
当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2 +k的图象;
当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;
因此,研究抛物线 y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_ ≤ -b/2a时,y随_的增大而减小;当_ ≥ -b/2a时,y随_的增大而增大.若a<0,当_ ≤ -b/2a时,y随_的增大而增大;当_ ≥ -b/2a时,y随_的增大而减小.
4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的两根.这两点间的距离AB=|_?-_?|
当△=0.图象与_轴只有一个交点;
当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.
5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_= -b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:
y=a_^2+b_+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).
(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
【第2篇 高中二次函数知识点总结
高中二次函数知识点总结
数学的学习是必要的,为了帮助大家更好的学习数学,下面是高中二次函数知识点总结,欢迎查阅!
一、二次函数概念:
1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.
2. 二次函数的结构特征:
⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵ 是常数,是二次项系数,是一次项系数,是常数项.
二、二次函数的基本形式
1. 二次函数基本形式:的性质:
a 的绝对值越大,抛物线的开口越小。
的符号开口方向顶点坐标对称轴性质
向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.
2. 的性质:
上加下减。
的`符号开口方向顶点坐标对称轴性质
向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.
3. 的性质:
左加右减。
的符号开口方向顶点坐标对称轴性质
向上_=h时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下_=h时,随的增大而减小;时,随的增大而增大;时,有最大值.
4. 的性质:
的符号开口方向顶点坐标对称轴性质
向上_=h时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下_=h时,随的增大而减小;时,随的增大而增大;时,有最大值.
三、二次函数图象的平移
1. 平移步骤:
方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;
⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:
2. 平移规律
在原有函数的基础上“值正右移,负左移;值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
方法二:
⑴沿轴平移:向上(下)平移个单位,变成
(或)
⑵沿轴平移:向左(右)平移个单位,变成(或)
四、二次函数与的比较
从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
五、二次函数图象的画法
五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.
六、二次函数的性质
1. 当时,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
【第3篇 锐角三角函数知识点总结
锐角三角函数知识点总结
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
2、如下图,在rt△abc中,∠c为直角,则∠a的锐角三角函数为(∠a可换成∠b):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的`增减性:
当0°≤?≤90°时,sin?随?的增大而增大,cos?随?的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:a2?b2?c2;②角的关系:a+b=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,oa、ob、oc、od的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,oa、ob、oc、od的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
【第4篇 高三数学复习三角函数知识点总结
高三数学复习三角函数知识点总结
考试内容:
角的概念的推广.弧度制.
任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函数、余弦函数的图像和性质.周期函数.函数y=asin(_+)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法.
考试要求:
(1)理解任意角的`概念、弧度的意义能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用五点法画正弦函数、余弦函数和函数y=asin(_+)的简图,理解a.、的物理意义.
(6)会由已知三角函数值求角,并会用符号arcsin_arc-cos_arctan_表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.
(8)同角三角函数基本关系式:sin2+cos2=1,sin/cos=tan,tancos=1.
高三数学复习三角函数知识点就为大家介绍到这里,希望对你有所帮助。
【第5篇 八年级数学一次函数知识点小总结
八年级数学一次函数知识点小总结
一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量_与y,并且对于_的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说_是自变量,y是_的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。)
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=k_(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。
一般地,形如y=k_+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=k_+b即为y=k_,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y=k_(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=k_。
(2)性质:当k>;0时,直线y=k_经过第三,一象限,从左向右上升,即随着_的增大y也增大;当k<0时,直线y=k_经过二,四象限,从左向右下降,即随着_的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的'系数,从而具体写出这个式子的方法。
1.一次函数与一元一次方程:从“数”的角度看_为何值时函数y=a_+b的值为0.
2.求a_+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=a_+b与_轴交点的横坐标
3.一次函数与一元一次不等式:
解不等式a_+b>;0(a,b是常数,a≠0).从“数”的角度看,_为何值时函数y=a_+b的值大于0.
4.解不等式a_+b>;0(a,b是常数,a≠0).从“形”的角度看,求直线y=a_+b在_轴上方的部分(射线)所对应的的横坐标的取值范围.
【第6篇 初中数学三角函数知识点总结归纳
初中数学三角函数知识点总结归纳
三角函数解题思路
很多人都认为成绩是用大量的题堆出来的,其实不然,要想提高成绩,我们还需要对所学的知识点进行总结。我们要对它格外重视。解题思想方法有转化思想、数形结合思想、函数思想、方程思想法。全文
锐角三角函数定义
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
互余角的`三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
【第7篇 初中数学一次函数知识点总结
一、定义与定义式:
自变量_和因变量y有如下关系:
y=k_+b
则此时称y是_的一次函数。
特别地,当b=0时,y是_的正比例函数。即:y=k_ (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的_的变化值成正比例,比值为k 即:y=k_+b (k为任意不为零的实数 b取任何实数)
2.当_=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与_轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点p(_,y),都满足等式:y=k_+b。(2)一次函数与y轴交点的坐标总是(0,b),与_轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随_的增大而增大;
当k<0时,直线必通过二、四象限,y随_的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=o时,直线通过原点o(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
【第8篇 初中数学一次函数知识点归纳的总结
关于初中数学一次函数知识点归纳的总结
知识要点:一次函数,也作线性函数,在_,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。
一次函数
表达式为y=k_+b(k≠0,k、b均为常数)的函数,叫做y是_的一次函数。当b=0时称y为_的正比例函数,正比例函数是一次函数中的特殊情况。当常数项为零时的一次函数,可表示为y=k_(k≠0),这时的常数k也叫比例系数。
y关于自变量_的一次函数有如下关系:
1.y=k_+b (k为任意不为0的常数,b为任意实数)
当_取一个值时,y有且只有一个值与_对应。如果有2个及以上个值与_对应时,就不是一次函数。
_为自变量,y为因变量,k为常数,y是_的一次函数。
特别的,当b=0时,y是_的正比例函数。即:y=k_ (k为常量,但k≠0)正比例函数图像经过原点。
定义域:自变量_的取值范围。自变量的取值一要使函数有意义;二要与实际相符合。
函数性质
1.在正比例函数时,_与y的商一定。在反比例函数时,_与y的积一定。
在y=k_+b(k,b为常数,k≠0)中,当_增大m倍时,函数值y则增大 m倍,反之,当_减少m倍时,函数值y则减少 m倍。
2.当_=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。
3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数是,则这两个一次函数图像互相垂直。
5.两个一次函数(y1=k1_+b1,y2=k2_+b2)相乘时(k≠0),得到的的新函数为二次函数,
该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
当k1,k2正负相同时,二次函数开口向上;
当k1,k2正负相反时,二次函数开口向下。
二次函数与y轴交点为(0,b2b1)。
6.两个一次函数(y1=a_+b,y2=c_+d)之比,得到的新函数y3=(a_+b)/(c_+d)为反比性函数,渐近线为_=-b/a,y=c/a。
知识要领总结:常用的表示方法:解析法、图像法、列表法。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的`横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
【第9篇 高一数学第2章指数函数对数函数和幂函数知识点总结
一、指数函数
指数函数是数学中重要的函数。应用到值e上的这个函数写为e_p(_)。还可以等价的写为e_,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
二、对数函数
对数公式是数学中的一种常见公式,如果a^_=n(a>0,且a≠1),则_叫做以a为底n的对数,记做_=log(a)(n),其中a要写于log右下。
三、幂函数
一般地,形如y=_α(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=_0 、y=_1、y=_2、y=_-1(注:y=_-1=1/_ y=_0时_≠0)等都是幂函数。
【第10篇 一次函数知识点总结
关于一次函数知识点总结
知识点1一次函数和正比例函数的概念
若两个变量_,y间的关系式可以表示成y=k_+b(k,b为常数,k≠0)的形式,则称y是_的一次函数(_为自变量),特别地,当b=0时,称y是_的正比例函数.
知识点2函数的图象
由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与_轴的交点。.不必一定选取这两个特殊点.
画正比例函数y=k_的图象时,只要描出点(0,0),(1,k)即可.
知识点3一次函数y=k_+b(k,b为常数,k≠0)的性质
(1)k的正负决定直线的倾斜方向;
①k>;0时,y的值随_值的增大而增大;
②k﹤o时,y的值随_值的增大而减小.
(2)|k|大小决定直线的倾斜程度,即|k|越大
①当b>;0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
①如图所示,当k>;0,b>;0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图所示,当k>;0,b
③如图所示,当k﹤o,b>;0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图所示,当k﹤o,b﹤o时,直线经过第二、三、四象限(直线不经过第一象限).
(5)由于|k|决定直线与_轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的'角度也可以分析,例如:直线y=_+1可以看作是正比例函数y=_向上平移一个单位得到的.
知识点4正比例函数y=k_(k≠0)的性质
(1)正比例函数y=k_的图象必经过原点;
(2)当k>;0时,图象经过第一、三象限,y随_的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随_的增大而减小.
知识点5点p(_0,y0)与直线y=k_+b的图象的关系
(1)如果点p(_0,y0)在直线y=k_+b的图象上,那么_0,y0的值必满足解析式y=k_+b;
(2)如果_0,y0是满足函数解析式的一对对应值,那么以_0,y0为坐标的点p(1,2)必在函数的图象上.
例如:点p(1,2)满足直线y=_+1,即_=1时,y=2,则点p(1,2)在直线y=_+l的图象上;点p′(2,1)不满足解析式y=_+1,因为当_=2时,y=3,所以点p′(2,1)不在直线y=_+l的图象上.
知识点6确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=k_(k≠0)中只有一个待定系数k,故只需一个条件(如一对_,y的值或一个点)就可求得k的值.
(2)由于一次函数y=k_+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对_,y的值.
知识点7待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=k_+b中,k,b就是待定系数.
知识点8用待定系数法确定一次函数表达式一般步骤
(1)设函数表达式为y=k_+b;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k与b的值,得到函数表达式.
思想方法小结(1)函数方法.(2)数形结合法.
知识规律小结(1)常数k,b对直线y=k_+b(k≠0)位置的影响.
①当b>;0时,直线与y轴的正半轴相交;
当b=0时,直线经过原点;
当b﹤0时,直线与y轴的负半轴相交.
②当k,b异号时,直线与_轴正半轴相交;
当b=0时,直线经过原点;
当k,b同号时,直线与_轴负半轴相交.
③当k>;o,b>;o时,图象经过第一、二、三象限;
当k>;0,b=0时,图象经过第一、三象限;
【第11篇 初中数学知识总结:正比例函数知识总结
初中数学知识总结:正比例函数知识总结
初中数学知识总结:正比例函数知识总结
今天小编为大家精心准备了有关高中文理分科应如何选择的相关内容,以供大家阅读!
正比例函数公式正比例函数要领:一般地,两个变量_,y之间的关系式可以表示成形如y=k_(k为常数,且k0)的函数,那么y就叫做_的正比例函数。
正比例函数的性质
定义域:r(实数集)
值域:r(实数集)
奇偶性:奇函数
单调性:
当0时,图像位于第一、三象限,从左往右,y随_的增大而增大(单调递增),为增函数;
当k0时,图像位于第二、四象限,从左往右,y随_的增大而减小(单调递减),为减函数。
周期性:不是周期函数。
对称性:无轴对称性,但关于原点中心对称。
图像:
正比例函数的图像是经过坐标原点(0,0)和定点(1,k)两点的一条直线,它的.斜率是k,横、纵截距都为0。正比例函数的图像是一条过原点的直线。
正比例函数y=k_(k0),当k的绝对值越大,直线越“陡”;当k的绝对值越小,直线越“平”。
正比例函数求法设该正比例函数的解析式为y=k_(k0),将已知点的坐标代入上式得到k,即可求出正比例函数的解析式。另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其_,y值即可。
正比例函数图像的作法
1、在_允许的范围内取一个值,根据解析式求出y的值;
2、根据第一步求的_、y的值描出点;
3、作出第二步描出的点和原点的直线(因为两点确定一直线)。
温馨提示:正比例函数属于一次函数,但一次函数却不一定是正比例函数。
【第12篇 任意角的三角函数知识点总结
任意角的三角函数知识点总结
三角函数定义
把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与_轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(_,y)。
sin(θ)=y;
cos(θ)=_;
tan(θ)=y/_;
三角函数公式大全
两角和公式
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
倍角公式
tan2a = 2tana/(1-tan2 a)
sin2a=2sina?cosa
cos2a = cos^2 a--sin2 a
=2cos2 a—1
=1—2sin^2 a
三倍角公式
sin3a = 3sina-4(sina)3;
cos3a = 4(cosa)3 -3cosa
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(a/2) = √{(1--cosa)/2}
cos(a/2) = √{(1+cosa)/2}
tan(a/2) = √{(1--cosa)/(1+cosa)}
cot(a/2) = √{(1+cosa)/(1-cosa)} ?
tan(a/2) = (1--cosa)/sina=sina/(1+cosa)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tana+tanb=sin(a+b)/cosacosb
积化和差
sin(a)sin(b) = -1/2_[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2_[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2_[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2_[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tga=tana = sina/cosa
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a?sin(a)+b?cos(a) = [√(a2+b2)]_sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a2+b2)]_cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]2;
1-sin(a) = [sin(a/2)-cos(a/2)]2;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的`三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈z)
物理常用公式
a?sin(ωt+θ)+ b?sin(ωt+φ) =
√{(a2 +b2 +2abcos(θ-φ)} ? sin{ ωt + arcsin[ (a?sinθ+b?sinφ) / √{a2 +b2; +2abcos(θ-φ)} }
√表示根号,包括{……}中的内容
【第13篇 高一数学二次函数知识点总结
高一数学二次函数知识点总结
i.定义与定义表达式
一般地,自变量_和因变量y之间存在如下关系:
y=a_^2+b_+c
(a,b,c为常数,a≠0,且a决定函数的开口方向,a>;0时,开口方向向上,a<0时,开口方向向下,iai还可以决定开口大小,iai越大开口就越小,iai越小开口就越大.)
则称y为_的二次函数。
二次函数表达式的右边通常为二次三项式。
ii.二次函数的三种表达式
一般式:y=a_^2+b_+c(a,b,c为常数,a≠0)
顶点式:y=a(_-h)^2+k[抛物线的顶点p(h,k)]
交点式:y=a(_-_?)(_-_?)[仅限于与_轴有交点a(_?,0)和b(_?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2ak=(4ac-b^2)/4a_?,_?=(-b±√b^2-4ac)/2a
iii.二次函数的图像
在平面直角坐标系中作出二次函数y=_^2的图像,
可以看出,二次函数的图像是一条抛物线。
iv.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
_=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点p。
特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)
2.抛物线有一个顶点p,坐标为
p(-b/2a,(4ac-b^2)/4a)
当-b/2a=0时,p在y轴上;当δ=b^2-4ac=0时,p在_轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>;0时,抛物线向上开口;当a<0时,抛物线向下开口。
a越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>;0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与_轴交点个数
δ=b^2-4ac>;0时,抛物线与_轴有2个交点。
δ=b^2-4ac=0时,抛物线与_轴有1个交点。
δ=b^2-4ac<0时,抛物线与_轴没有交点。_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
v.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=a_^2+b_+c,
当y=0时,二次函数为关于_的一元二次方程(以下称方程),
即a_^2+b_+c=0
此时,函数图像与_轴有无交点即方程有无实数根。
函数与_轴交点的横坐标即为方程的根。
1.二次函数y=a_^2,y=a(_-h)^2,y=a(_-h)^2+k,y=a_^2+b_+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
顶点坐标
对称轴
y=a_^2
(0,0)
_=0
y=a(_-h)^2
(h,0)
_=h
y=a(_-h)^2+k
(h,k)
_=h
y=a_^2+b_+c
(-b/2a,[4ac-b^2]/4a)
_=-b/2a
当h>;0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,
当h<0时,则向左平行移动h个单位得到.
当h>;0,k>;0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;
当h>;0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动k个单位可得到y=a(_-h)^2+k的图象;
当h<0,k>;0时,将抛物线向左平行移动h个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动h个单位,再向下移动k个单位可得到y=a(_-h)^2+k的图象;
因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>;0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=a_^2+b_+c(a≠0),若a>;0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的.增大而增大;当_≥-b/2a时,y随_的增大而减小.
4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>;0,图象与_轴交于两点a(_?,0)和b(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0
(a≠0)的两根.这两点间的距离ab=_?-_?
当△=0.图象与_轴只有一个交点;
当△<0.图象与_轴没有交点.当a>;0时,图象落在_轴的上方,_为任何实数时,都有y>;0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.
5.抛物线y=a_^2+b_+c的最值:如果a>;0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:
y=a_^2+b_+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).
(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
【第14篇 二次函数知识点总结
二次函数知识点总结
二次函数及其图像
二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(_)=a_^2b_c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
一般的,自变量_和因变量y之间存在如下关系:
一般式
y=a_∧2;b_c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a);
顶点式
y=a(_m)∧2k(a≠0,a、m、k为常数)或y=a(_-h)∧2k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为_=-m,顶点的位置特征和图像的开口方向与函数y=a_∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
交点式
y=a(_-_1)(_-_2)[仅限于与_轴有交点a(_1,0)和b(_2,0)的抛物线];
重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>;0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)
y=(y3(_-_1)(_-_2))/((_3-_1)(_3-_2)(y2(_-_1)(_-_3))/((_2-_1)(_2-_3)(y1(_-_2)(_-_3))/((_1-_2)(_1-_3)。由此可引导出交点式的系数a=y1/(_1__2)(y1为截距)
求根公式
二次函数表达式的右边通常为二次三项式。
_是自变量,y是_的二次函数
_1,_2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法还有因式分解法和配方法
在平面直角坐标系中作出二次函数y=2_的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有1本身图像,旁边注明函数。
2画出对称轴,并注明_=什么
3与_轴交点坐标,与y轴交点坐标,顶点坐标。抛物线的性质
轴对称
1.抛物线是轴对称图形。对称轴为直线_=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点p。
特别地,当b=0时,抛物线的对称轴是y轴(即直线_=0)
顶点
2.抛物线有一个顶点p,坐标为p(-b/2a,4ac-b^2;)/4a)
当-b/2a=0时,p在y轴上;当δ=b^2;-4ac=0时,p在_轴上。
开口
3.二次项系数a决定抛物线的开口方向和大小。
当a>;0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
决定对称轴位置的'因素
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>;0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b 2a=''>;0,所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>;0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
决定抛物线与y轴交点的因素
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
抛物线与_轴交点个数
6.抛物线与_轴交点个数
δ=b^2-4ac>;0时,抛物线与_轴有2个交点。
δ=b^2-4ac=0时,抛物线与_轴有1个交点。
δ=b^2-4ac<0时,抛物线与_轴没有交点。_的取值是虚数(_=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
当a>;0时,函数在_=-b/2a处取得最小值f(-b/2a)=4ac-b/4a;在{_|_<-b/2a}上是减函数,在
{_|_>;-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=a_^2c(a≠0)
特殊值的形式
7.特殊值的形式
①当_=1时y=abc
②当_=-1时y=a-bc
③当_=2时y=4a2bc
④当_=-2时y=4a-2bc
【第15篇 高一数学幂函数知识点总结
高一数学幂函数知识点总结
定义:
形如y=_^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的'所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当_为不同的数值时,幂函数的值域的不同情况如下:在_大于0时,函数的值域总是大于0的实数。在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则_^(p/q)=q次根号(_的p次方),如果q是奇数,函数的定义域是r,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则_=1/(_^k),显然_≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于_>;0,则a可以是任意实数;
排除了为0这种可能,即对于_<0和_>;0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于_为大于且等于0的所有实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在_大于0时,函数的值域总是大于0的实数。
在_小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
【第16篇 初中数学反比例函数知识点总结
初中数学反比例函数知识点总结
反比例函数
反比例函数表达式
y=k/_=k·1/_
_y=k
y=k·_^(-1) (即:y等于_的负一次方,此处_必须为一次方)
y=k/_(k为常数且k≠0,_≠0)
若y=k/n_此时比例系数为:k/n
自变量的取值范围
① 在一般的情况下 , 自变量 _ 的取值范围可以是 不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。
解析式 y=k/_ 其中_是自变量,y是_的函数,其定义域是不等于0的一切实数,即 {_|_≠0,_∈r}。下面是一些常见的形式:
y=k/_=k·1/_
_y=k
y=k·_^(-1)
y=k_(k为常数(k≠0),_不等于0)
反比例函数性质单调性
当k>;0时,图象分别位于第一、三象限,同一个象限内,从左往右,y随_的增大而减小;
当k<0时,图象分别位于第二、四象限,同一个象限内,从左往右,y随_的增大而增大。
k>;0时,函数在_<0上同为减函数、在_>;0上同为减函数;k<0时,函数在_<0上为增函数、在_>;0上同为增函数。
相交性
因为在y=k/_(k≠0)中,_不能为0,y也不能为0,所以反比例函数的图象不可能与_轴相交,也不可能与y轴相交,只能无限接近_轴,y轴。
面积
在一个反比例函数图象上任取两点p,q,过点p,q分别作_轴,y轴的平行线,与坐标轴围成的矩形面积为s1,s2则s1=s2=|k|
反比例上一点m向_、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|
图像
反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=_ y=-_(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数图像不与_轴和y轴相交。y=k/_的渐近线:_轴与y轴。
k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
k|越大,反比例函数的图象离坐标轴的距离越远。
对称性
反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,它的对称轴是_轴和y轴夹角的角平分线。
图像关于原点对称。若设正比例函数y=m_与反比例函数y=n/_交于a、b两点(m、n同号),那么a b两点关于原点对称。
知识归纳:反比例函数关于正比例函数y=_,y=-_轴对称,并且关于原点中心对称。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的'性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。