欢迎光临管理者范文网
当前位置:管理者范文网 > 安全管理 > 安全操作规程 > 规程范文

气体切割规程4篇

更新时间:2024-05-15 查看人数:17

气体切割规程

有哪些

气体切割是一种广泛应用于金属加工领域的工艺,它利用高温气体火焰或等离子弧来切割金属材料。以下是气体切割规程的主要组成部分:

1. 安全规定:确保操作者熟悉设备和操作流程,穿戴适当的防护装备,遵守安全操作规程,防止火灾和爆炸风险。

2. 设备准备:检查切割设备的完好性,包括氧气瓶、乙炔瓶、减压器、割炬等,确保无泄漏、损坏或其他安全隐患。

3. 气体混合与调节:正确配比氧气和燃料气体,如乙炔,以产生适宜的切割火焰,调整火焰类型以适应不同的切割厚度和材质。

4. 切割操作:掌握正确的切割姿势和技巧,预热工件,维持稳定的切割速度和角度,确保切口质量。

5. 清理与维护:切割完成后,及时清理切口残渣,检查设备,进行必要的维护保养,以保证设备性能和使用寿命。

标准

1. 安全标准:遵循osha(美国职业安全与健康管理局)或相应国家的安全规定,确保作业环境的安全性。

2. 质量标准:切割面应平滑无毛刺,无明显氧化层,符合相关行业或工程的质量要求。

3. 效率标准:在保证质量的前提下,提高切割速度和精度,降低能耗和废料产生。

4. 环保标准:减少气体排放,处理废弃物,遵守环保法规。

是什么意思

气体切割规程意味着一套详细的操作流程和标准,旨在确保在气体切割过程中实现高效、安全、高质量的切割效果。这意味着:

- 安全规定不仅是对操作者的保护,也是对工作场所的整体安全要求,需要严格遵守。 - 设备准备和气体混合是切割质量的基础,任何疏忽都可能导致不良的切割效果或设备故障。 - 切割操作的技术细节,如火焰调节和切割速度,直接影响切口质量和工作效率。 - 清理与维护不仅关乎设备寿命,也是保持良好工作状态和持续生产力的关键。

气体切割规程是一个全面的指导框架,涵盖了从准备到完成的每个步骤,旨在确保操作者能够在安全、高效和高质量的条件下进行工作。每一位从事这项工作的人员都应理解和遵循这些规程,以实现最佳的切割效果。

气体切割规程范文

第1篇 丙烷气体切割操作规程

乙炔的代用气体有丙烷、丙烯、天然气、氢气(电解水产生)、液化石油气、一些混合气体等。汽化经雾化后也可作为燃气用于气割。

1.氧-丙烷气体切割

气割时使用的预热火焰为氧-丙烷火焰。根据使用效果、成本、气源情况等综合分析,丙烷是乙炔的比较理想的代用燃料,目前丙烷的使用量在所有乙炔代用燃气中用量最大。工业发达国家早已经使用丙烷(c3h8)这种质优价廉的气体进行火焰切割。氧-丙烷切割要求氧气纯度高于99.5%,丙烷气的纯度也要高于99.5%。一般采用g01-30型割炬配用金池104-机用型快速割嘴。

与氧-乙炔火焰切割相比,氧-丙烷火焰切割的特点如下:

① 切割面上缘不烧塌,熔化量少;切割面下缘黏性熔渣少,易于清除;

② 切割面的氧化皮易剥落,切割面的粗糙度相对较低;

③ 切割厚钢板时,不塌边、后劲足,切口表面光洁、棱角整齐,精度高;

④ 倾斜切割时,倾斜角度越大,切割难度越大;

⑤ 比氧-乙炔切割成本低,总成本约降低30%以上。

同氧-乙炔切割相似,氧-丙烷切割按使用的割炬分为射吸式割炬和等压式割炬,射吸式割炬大多用于手工切割,等压式割炬大多用于机械切割。切割时,预热火焰开始用氧化焰(氧与丙烷混合比5:1),以缩短预热时间。正常切割时转用中性焰(混合比为3.5:1)。使用丙烷气切割与氧-乙炔切割的操作步骤基本一样,只是氧-丙烷火焰略弱,切割速度较慢一些。采取如下措施可使切割速度提高:

① 预热时,割炬不抖动,火焰固定于钢板边缘一点,适当加大氧气量,调节火焰成氧化焰;

② 换用金池丙烷快速割嘴使割缝变窄,适当提高切割速度;

③ 直线切割时,适当使割嘴后倾,可提高切割速度和切割质量

2. 液化石油气切割

随着石油工业的发展,石油工业中的副产品——液化石油气已被用在金属的切割上。液化石油气的主要成分是丙烷(c3h8)、丁烷(c4h10)、丁烯(c4h8)、戊烷(c5h12)和乙烷(c2h6)等。这些物质在常温下都是气体。为了便于储存和运输,把它们加压变成液体,然后装在瓶里使用,这就是液化石油气。

采用氧-液化石油气代替氧-乙炔进行切割具有很多优点,如成本低、切口表面光滑、氧化铁熔渣易清除、操作安全、回火爆炸的可能性较小、使用方便等;缺点是切割时预热的时间稍长,耗氧量大。

氧-液化石油气火焰的构造,同氧-乙炔火焰基本一样,也分为氧化焰、碳化焰、中性焰三种,焰心也有部分分解反应。不同的是氧-液化石油气焰习分解产物较少,内焰不像乙炔焰那样明亮,而是有点发蓝,外焰则显得比氧-乙炔焰清晰而且较长。

按汽化方式的不同,液化石油气的供给方法分为:自然汽化、强制汽化和加添加剂。

(1)自燃汽化

瓶内液体蒸发所需要的热量完全靠瓶子周围的空气供给。这种方法要求瓶内液化石油气的丙烷含量高,不能含有戊烷,环境温度不能太低,冬天必须放在有采暖设备的房子里使用。这种方式汽化量较小,但切割一般厚度的钢板已完全够用。

(2)强制汽化

把瓶内气体导出,靠汽化器使之汽化。这种方法的优点是:

① 瓶内组成始终不变,因此压力一直稳定,可不剩残液;

② 液化石油气的汽化量仅取决于汽化器的汽化能力,与气瓶的大小无关;

③ 在环境温度较低的条件下同样可以使用,适于冬季室外作业;

④ 对液化石油气组成没有十分严格的要求。

(3)加添加剂

在液化石油气、丙烷气内加注添加剂,可起到助燃、阻聚、催化、裂化等特殊功效,显著改善气体的燃烧特性,大大提升火焰的燃烧温度。添加剂能有效改善液化石油气在气瓶内液量较小或在环境温度较低(如冬季)条件下,由于汽化量不足影响切割的问题。

目前使用的割炬多是射吸式的,但规格和结构不统一,所以液化石油气输出压力也大小不同。为了保证液化石油气输入割炬的流量,达到与氧混合的比例要求,调整液化石油气的供应十分重要。根据现场操作经验,手工切割一般厚度的钢板,液化石油气调压后的输出压力为2~3kpa;自动切割机为10~30kpa,切割厚度200~300mm的钢冒口时为25kpa。

由于液化石油气的着火点较高,致使点火较氧-乙炔时困难,必须用明火才能点燃,或者把割嘴部靠近钢板表面,并稍微打开一点氧气阀门,也可用打火枪点火。调节时,先送一点氧气,然后慢慢加大液化石油气量和氧气量。当火焰最短,呈蓝白色并发出呜呜响声时,该火焰温度最高。

氧-液化石油气切割时的操作工艺与氧-乙炔切割基本相同。

3. 高速、高效气割工艺

(1)金池超声速割嘴快速气割

这种切割方法选用割嘴的切割氧孔道具有超声速均直流的气动特性曲面,切割面光洁。由于超声速氧流在单位时间内能提供较多的氧气,可促进被切割金属的氧化反应,便于气割过程的顺利进行。

超声速割嘴因其切割氧出口孔道是扩散形,使氧射流的喷出速度大于声速,且长而挺直、动量大,故具有良好的切割性能。不仅切割速度快(比一般直筒形割嘴快20%~25%),而且所能切割的厚度大,切割面质量好。一般超声速割嘴有切割氧压力490kpa和690kpa的两种。

普通割嘴切割氧孔道是圆柱形的,切割氧压力随孔径的增加而增加,氧气流出口速度较慢,涡流大。而超声速快速割嘴的切割氧压力基本不随切割厚度的变化而变化。

金池超声速割嘴切割操作方法与普通割嘴相同,但需注意以下几点:

① 不论切割薄板还是厚板,切割氧压力的设定需按照割嘴的设计压力,但可适当高些(主要看风线情况),以弥补软管的压力损失;

② 氧气皮管宜使用内径8mm的软管;

③ 预热火焰功率要适当加大些,但切割厚板不宜增大。

(2)氧帘割嘴快速气割。

氧帘割嘴快速气割在通常的预热火焰和切割氧流之间附加一层小流量、低流速的保护氧流,在切割氧流外围形成一道保护屏幕,使之不受周围杂质气体的污染,相对地提高了切割氧的纯度,并对预热火焰起稳定作用。

因此这种割嘴的切割速度比普通割嘴高40%~50%,切割面粗糙度可达ra12.5μm,且上缘棱角清晰,下缘无粘渣,特别适合于厚度40mm以下成形零件的优质切割。在我国普遍采用气态氧的条件下,氧帘割嘴是提高气割速度和质量的有效方法。氧帘割嘴的操作注意事项与超声速割嘴相同。

气割用燃气最早使用是乙炔。随着工业的发展,人们在探索其他的气体替代乙炔。目前为了提高切割质量,手工切割时可采用在手工割炬装上电动匀走器的方法,利用电动机带动该轮使割炬沿切割线均速行走。也可使用直线导板,这样既减轻劳动强度,又能提高切割面质量。

4. 氧-熔剂切割

碳钢比较容易切割,但有些金属,例如含铬量较多的钢(如不锈钢、耐热钢等)以及铸铁、有色金属等,用一般的气割方法是无法切割的。因为这些金属在氧气中燃烧时,能结成一种难熔的高熔点氧化物,阻碍了氧气与金属表面接触,使切割过程不能进行。

氧-熔剂切割法又称为金属粉末切割法,是向切割区域送入金属粉末(铁粉、铝粉等)的气割方法。可以切割用常规气体火焰切割方法难以切割的材料,如不锈钢、铜和铸铁等。金属粉末切割的工作原理如图2所示。

氧-熔剂切割方法的工艺要点在于:除了有切割氧气的气流外,同时还有由切割氧气流带出的粉末状熔剂吹到切割区,利用氧气流与熔剂对被切割金属的综合作用,借以改善切割性能,达到切割不锈钢、铸铁等金属的目的。

这种方法虽设备比较复杂,但切割质量比振动切割法好。在没有等离子弧切割设备的场合,是切割一些难切割材料的快速和经济的切割方法。

氧-熔剂切割是在普通氧气切割过程中在切割氧流内加入纯铁粉或其他熔剂,利用它们的燃烧热和除渣作用实现切割的方法。通过金属粉末的燃烧产生附加热量,利用这些附加热量生成的金属氧化物使得切割熔渣变稀薄,易于被切割氧流排除,从而达到实现连续切割的目的。

氧-熔剂切割所用的设备与器材与普通气割设备大体相同,但比普通氧-燃气切割多了熔剂及输送熔剂所需的送粉装置。切割厚度小于300mm的不锈钢可以使用一般氧气切割用的割炬和割嘴(包括低压扩散形割嘴),切割更厚的工件时,则需使用特制的割炬和割嘴。

为了使送入切割反应区的熔剂均匀,应采用专用的送粉装置。氧-熔剂切割按熔剂向切割区送进方式的不同,分为内送粉式和外送粉式两种,见图3。内送粉时,熔剂通过割嘴的切割氧输送并通过割嘴的切割氧孔道喷入切割反应区,这种送粉方式送粉均匀,熔剂基本没有浪费,送粉效果好,切割效果也好。但是由于熔剂通过切割孔道,对切割氧孔道产生冲刷作用,使割嘴的切割氧孔道损坏严重。外送粉时,熔剂由压缩空气(或氮气)通过与割嘴分离的送粉孔送入切割反应区,这种送粉方式没有内送粉均匀,容易造成熔剂浪费,送粉量不易掌握,但这种送粉方式对割嘴没有损坏。内送粉式氧-熔剂切割的切割能力有限,通常只能切割500mm以下的工件,效率也较低。大厚度工件常用外送粉式氧-熔剂切割。

对切割用熔剂的要求是:在氧中燃烧时发热量大,燃烧产物的熔点低,流动性好,或具有一定的冲刷作用。最常用的是纯铁粉,其粉度一般为0.11mm或更细,以利于在切割反应区中充分燃烧。为了提高切割效率,改善切割质量,尤其在切割有色金属时,也采用在铁粉中加铝粉或其他金属粉末作熔剂。

采用氧-熔剂切割不锈钢、铸铁,其切割厚度大大提高,国内已切割到厚度1200mm。

所加熔剂的成分主要是由铁粉、铝粉、硼砂、石英砂等组成。附加的铁粉、铝粉在氧气流中燃烧时,产生大量的热量,对切割处进行补充加热,使难熔的氧化物熔化并与被切割金属表面的氧化物熔在一起。加入硼砂等可使熔渣变稀,使之易于流动,很容易从金属表面被吹走而打开氧气进入的通路,使切割过程正常进行。熔剂中除了铁粉外,还混入其他粉末状熔剂加入物,熔剂加入物的加入量根据被切割金属来确定。

切割不锈钢及高铬钢时,可采用铁粉作为熔剂。切割高铬钢时,也可采用铁粉与石英砂按1:1比例混合的熔剂。切割时,割嘴与金属表面距离应比普通气割时稍大些,约为15~20mm,否则容易引起回火。切割速度比切割普通低碳钢稍低一些,预热焰功率比普通气割高15%~25%。

氧-熔剂方法切割铸铁与切割高铬钢大致相同,但所用熔剂除铁粉外,还要加入30%~35%的磷铁粉。切割铸铁时,切割速度要比切割高铬钢时低50%~55%,气体及熔剂的消耗量比切割高铬钢时高2.5~3倍。

氧-熔剂方法切割紫铜、黄铜及青铜时,采用的熔剂成分是:铁粉70%~75%、铝粉15%~20%、磷铁10%~15%。切割时,先将被切割金属预热到200~400℃。割嘴和被切割金属之间的距离根据金属的厚度决定,一般在20~50mm之间。

5. 水解氢-氧火焰切割

以氧气和氢气混合燃烧形成的火焰作预热火焰而进行的氧气切割称为氧-氢切割。由于氢的总热值小,火焰温度低(仅2400℃),预热时间长(是氧-乙炔火焰的2倍)且安全性差,所以过去在工业生产上没有获得广泛应用。但由于氧-氢混合气燃烧的产物是水,对环境无污染。因此,近年来国内外相继开发出小型电解水的氢-氧发生器,并利用其产生的氢-氧混合气作气焊火焰和气割的预热火焰。于是出现了“水解氢-氧火焰切割”。

电解水氢-氧发生器示意如图4所示。其中电解槽是产生氢和氧的装置,为了加速水的电离,提高电解效率,通常在水中加入适量的强电解质,如koh。气体压力继电器用于控制发气量,当混合器内压力大于某一设定值时,即自动切断电源,停止电解;当压力降至一定值时,电源自动接通,电解槽继续产生气体。

采用水解氢-氢火焰切割时,可使用普通氧气切割用的割炬。这种切割方法的供气方式有多种,图5所示为最简单的一种。来自水解氢-氧发生器的混合气通入割炬的燃气通道,原预热氧气阀关闭。切割氧单独由氧气瓶供给。由于发生器产生的氢和氧的体积比是固定的(为0.5),所以混合气燃烧的火焰为中性焰,其燃烧性能不可调节。混合气流量可通过燃气阀或发生器的发气量进行调节。

应注意的是,氢气易爆炸,因此装置中设两道回火防止器,并在混合器上安装防爆片。一旦回火,能及时排放气体,防止逆燃火焰进入电解槽。

水解氢-氧火焰切割工艺和操作与一般氧-乙炔切割相同。

使用水解氢-氧火焰切割时要注意安全,发生器的各部件及其连接接头应密封,以免泄露造成事故。发生器应可靠接地,尽可能在室外作业,室内作业要有良好通风。工作开始前,先开割炬的混合气通路的阀门,排除里面的空气,待2~3min后才能点火切割。

第2篇 气体切割作业安全操规程

火灾、爆炸灼烫

4 防护用品

劳保服、安全鞋帽防护眼镜手套

5 操作流程

5.1 作业前

5.1.1 作业人员应持证上岗,时戴好防护眼镜。

5.1.2 确认割炬、气管良好,压表减阀回火防止器震圈安全有效。

5.1.3 气瓶放置在阴凉处,并安装防倾倒氧乙炔全距离应大于 气瓶放置在阴凉处,并安装防倾倒氧乙炔全距离应大于 气瓶放置在阴凉处,并安装防倾倒氧乙炔全距离应大于 5米,与明火间 米,与明火间 的距离应大于 10 米,如条件限制在采取隔离措施后应不小于 5米。

5.1.4 切割前应确认工作场所安全,现配备灭火器。

5.2 作业中

5.2.1 严禁采取滚、滑抛等方式搬运气瓶。

5.2.2 在 安装减压器前应清除连接口杂质,缓慢开启阀门氧气瓶表保持在 安装减压器前应清除连接口杂质,缓慢开启阀门氧气瓶表保持在 安装减压器前应清除连接口杂质,缓慢开启阀门氧气瓶表保持0.5mpa 0.5mpa左右, 乙炔瓶表压保持 在 0.05mpa 0.05mpa0.05mpa0.05mpa左右。

5.2.3 切割工件时,与地面(或)间应留有一定的隙。

107 / 186

5.2.4 切割工件时,防止飞溅的氧化铁渣烫伤操作者。

5.2.5 气管穿过道路时,应做好防护措施;拉动要止刮伤、夹。

5.2.6 氧气瓶阀、减压器焊炬割胶管严禁粘上易燃物质和油脂。

5.2.7 切割处的灼热工件严禁放在氧气、乙炔橡胶软管电线及安全道上。

5.2.8 严禁将气管缠绕身上作业。

5.2.9 严禁将气管与焊机电源线、二次一起放置。

5.2.10 严禁将氧气、乙炔瓶放置在绝缘地板上。 严禁将氧气、乙炔瓶放置在绝缘地板上。

5.3 作业后

5.3.1 作业后关闭气瓶阀门,回收工具清理现场。

5.3.2 氧气瓶应保留不小于 0.1mpa 、乙炔瓶应保留不小于 0.01 mpa 0.01 mpa 剩余压力。

5.3.3 氧气、乙炔瓶应按规定集中存放。

6 应急措施

6.1 发生火灾时,应先切断危险源就地启用灭器材必要动公司级的急救 发生火灾时,应先切断危险源就地启用灭器材必要动公司级的急救 援方案。

6.2 发生爆炸事件应立即将相关信息汇报上级领导,并启动公司的急救援方案。

6.3 发生烧(烫)伤时,如小面积则立即用大量干净的水冲洗至少 发生烧(烫)伤时,如小面积则立即用大量干净的水冲洗至少 发生烧(烫)伤时,如小面积则立即用大量干净的水冲洗至少 发生烧(烫)伤时,如小面积则立即用大量干净的水冲洗至少 30 分钟,涂烧伤膏 分钟,涂烧伤膏后送医院救治。

第3篇 气体切割操作规程

乙炔的代用气体有丙烷、丙烯、天然气、氢气(电解水产生)、液化石油气、一些混合气体等。汽油经雾化后也可作为燃气用于气割。

1.氧-丙烷气体切割

气割时使用的预热火焰为氧-丙烷火焰。根据使用效果、成本、气源情况等综合分析,丙烷是乙炔的比较理想的代用燃料,目前丙烷的使用量在所有乙炔代用燃气中用量最大。工业发达国家早已经使用丙烷(c3h8)这种质优价廉的气体进行火焰切割。氧-丙烷切割要求氧气纯度高于99.5%,丙烷气的纯度也要高于99.5%。一般采用g01-30型割炬配用gkj4型快速割嘴。

与氧-乙炔火焰切割相比,氧-丙烷火焰切割的特点如下:

① 切割面上缘不烧塌,熔化量少;切割面下缘黏性熔渣少,易于清除;

② 切割面的氧化皮易剥落,切割面的粗糙度相对较低;

③ 切割厚钢板时,不塌边、后劲足,切口表面光洁、棱角整齐,精度高;

④ 倾斜切割时,倾斜角度越大,切割难度越大;

⑤ 比氧-乙炔切割成本低,总成本约降低30%以上。

同氧-乙炔切割相似,氧-丙烷切割按使用的割炬分为射吸式割炬和等压式割炬,射吸式割炬大多用于手工切割,等压式割炬大多用于机械切割。

切割时,预热火焰开始用氧化焰(氧与丙烷混合比5:1),以缩短预热时间。正常切割时转用中性焰(混合比为3.5:1)。使用丙烷气切割与氧-乙炔切割的操作步骤基本一样,只是氧-丙烷火焰略弱,切割速度较慢一些。采取如下措施可使切割速度提高:

① 预热时,割炬不抖动,火焰固定于钢板边缘一点,适当加大氧气量,调节火焰成氧化焰;

② 换用丙烷快速割嘴使割缝变窄,适当提高切割速度;

③ 直线切割时,适当使割嘴后倾,可提高切割速度和切割质量。

2. 液化石油气切割

随着石油工业的发展,石油工业中的副产品——液化石油气已被用在金属的切割上。液化石油气的主要成分是丙烷(c3h8)、丁烷(c4h10)、丁烯(c4h8)、戊烷(c5h12)和乙烷(c2h6)等。这些物质在常温下都是气体。为了便于储存和运输,把它们加压变成液体,然后装在瓶里使用,这就是液化石油气。

采用氧-液化石油气代替氧-乙炔进行切割具有很多优点,如成本低、切口表面光滑、氧化铁熔渣易清除、操作安全、回火爆炸的可能性较小、使用方便等;缺点是切割时预热的时间稍长,耗氧量大。

氧-液化石油气火焰的构造,同氧-乙炔火焰基本一样,也分为氧化焰、碳化焰、中性焰三种,焰心也有部分分解反应。不同的是氧-液化石油气焰习分解产物较少,内焰不像乙炔焰那样明亮,而是有点发蓝,外焰则显得比氧-乙炔焰清晰而且较长。

按汽化方式的不同,液化石油气的供给方法分为:自然汽化、强制汽化和加添加剂。

(1)自燃汽化

瓶内液体蒸发所需要的热量完全靠瓶子周围的空气供给。这种方法要求瓶内液化石油气的丙烷含量高,不能含有戊烷,环境温度不能太低,冬天必须放在有采暖设备的房子里使用。这种方式汽化量较小,但切割一般厚度的钢板已完全够用。

(2)强制汽化

把瓶内气体导出,靠汽化器使之汽化。这种方法的优点是:

① 瓶内组成始终不变,因此压力一直稳定,可不剩残液;

② 液化石油气的汽化量仅取决于汽化器的汽化能力,与气瓶的大小无关;

③ 在环境温度较低的条件下同样可以使用,适于冬季室外作业;

④ 对液化石油气组成没有十分严格的要求。

(3)加添加剂

在液化石油气、丙烷气内加注添加剂,可起到助燃、阻聚、催化、裂化等特殊功效,显著改善气体的燃烧特性,大大提升火焰的燃烧温度。添加剂能有效改善液化石油气在气瓶内液量较小或在环境温度较低(如冬季)条件下,由于汽化量不足影响切割的问题。

目前使用的割炬多是射吸式的,但规格和结构不统一,所以液化石油气输出压力也大小不同。为了保证液化石油气输入割炬的流量,达到与氧混合的比例要求,调整液化石油气的供应十分重要。根据现场操作经验,手工切割一般厚度的钢板,液化石油气调压后的输出压力为2~3kpa;自动切割机为10~30kpa,切割厚度200~300mm的钢冒口时为25kpa。

由于液化石油气的着火点较高,致使点火较氧-乙炔时困难,必须用明火才能点燃,或者把割嘴部靠近钢板表面,并稍微打开一点氧气阀门,也可用打火枪点火。调节时,先送一点氧气,然后慢慢加大液化石油气量和氧气量。当火焰最短,呈蓝白色并发出呜呜响声时,该火焰温度最高。

氧-液化石油气切割时的操作工艺与氧-乙炔切割基本相同。

3. 高速、高效气割工艺

(1)超声速割嘴快速气割

这种切割方法选用割嘴的切割氧孔道具有超声速均直流的气动特性曲面,切割面光洁。由于超声速氧流在单位时间内能提供较多的氧气,可促进被切割金属的氧化反应,便于气割过程的顺利进行。

超声速割嘴因其切割氧出口孔道是扩散形,使氧射流的喷出速度大于声速,且长而挺直、动量大,故具有良好的切割性能。不仅切割速度快(比一般直筒形割嘴快20%~25%),而且所能切割的厚度大,切割面质量好。一般超声速割嘴有切割氧压力490kpa和690kpa的两种。

普通割嘴切割氧孔道是圆柱形的,切割氧压力随孔径的增加而增加,氧气流出口速度较慢,涡流大。而超声速快速割嘴的切割氧压力基本不随切割厚度的变化而变化。

超声速割嘴切割操作方法与普通割嘴相同,但需注意以下几点:

① 不论切割薄板还是厚板,切割氧压力的设定需按照割嘴的设计压力,但可适当高些(主要看风线情况),以弥补软管的压力损失;

② 氧气皮管宜使用内径8mm的软管;

③ 预热火焰功率要适当加大些,但切割厚板不宜增大。

(2)氧帘割嘴快速气割。

氧帘割嘴快速气割在通常的预热火焰和切割氧流之间附加一层小流量、低流速的保护氧流,在切割氧流外围形成一道保护屏幕,使之不受周围杂质气体的污染,相对地提高了切割氧的纯度,并对预热火焰起稳定作用。

因此这种割嘴的切割速度比普通割嘴高40%~50%,切割面粗糙度可达ra12.5μm,且上缘棱角清晰,下缘无粘渣,特别适合于厚度40mm以下成形零件的优质切割。在我国普遍采用气态氧的条件下,氧帘割嘴是提高气割速度和质量的有效方法。氧帘割嘴的操作注意事项与超声速割嘴相同。

气割用燃气最早使用是乙炔。随着工业的发展,人们在探索其他的气体替代乙炔。目前为了提高切割质量,手工切割时可采用在手工割炬装上电动匀走器的方法,利用电动机带动该轮使割炬沿切割线均速行走。也可使用直线导板,这样既减轻劳动强度,又能提高切割面质量。

4. 氧-熔剂切割

碳钢比较容易切割,但有些金属,例如含铬量较多的钢(如不锈钢、耐热钢等)以及铸铁、有色金属等,用一般的气割方法是无法切割的。因为这些金属在氧气中燃烧时,能结成一种难熔的高熔点氧化物,阻碍了氧气与金属表面接触,使切割过程不能进行。

氧-熔剂切割法又称为金属粉末切割法,是向切割区域送入金属粉末(铁粉、铝粉等)的气割方法。可以切割用常规气体火焰切割方法难以切割的材料,如不锈钢、铜和铸铁等。金属粉末切割的工作原理如图2所示。

氧-熔剂切割方法的工艺要点在于:除了有切割氧气的气流外,同时还有由切割氧气流带出的粉末状熔剂吹到切割区,利用氧气流与熔剂对被切割金属的综合作用,借以改善切割性能,达到切割不锈钢、铸铁等金属的目的。

这种方法虽设备比较复杂,但切割质量比振动切割法好。在没有等离子弧切割设备的场合,是切割一些难切割材料的快速和经济的切割方法。

氧-熔剂切割是在普通氧气切割过程中在切割氧流内加入纯铁粉或其他熔剂,利用它们的燃烧热和除渣作用实现切割的方法。通过金属粉末的燃烧产生附加热量,利用这些附加热量生成的金属氧化物使得切割熔渣变稀薄,易于被切割氧流排除,从而达到实现连续切割的目的。

氧-熔剂切割所用的设备与器材与普通气割设备大体相同,但比普通氧-燃气切割多了熔剂及输送熔剂所需的送粉装置。切割厚度小于300mm的不锈钢可以使用一般氧气切割用的割炬和割嘴(包括低压扩散形割嘴),切割更厚的工件时,则需使用特制的割炬和割嘴。

为了使送入切割反应区的熔剂均匀,应采用专用的送粉装置。氧-熔剂切割按熔剂向切割区送进方式的不同,分为内送粉式和外送粉式两种,见图3。内送粉时,熔剂通过割嘴的切割氧输送并通过割嘴的切割氧孔道喷入切割反应区,这种送粉方式送粉均匀,熔剂基本没有浪费,送粉效果好,切割效果也好。但是由于熔剂通过切割孔道,对切割氧孔道产生冲刷作用,使割嘴的切割氧孔道损坏严重。外送粉时,熔剂由压缩空气(或氮气)通过与割嘴分离的送粉孔送入切割反应区,这种送粉方式没有内送粉均匀,容易造成熔剂浪费,送粉量不易掌握,但这种送粉方式对割嘴没有损坏。内送粉式氧-熔剂切割的切割能力有限,通常只能切割500mm以下的工件,效率也较低。大厚度工件常用外送粉式氧-熔剂切割。

对切割用熔剂的要求是:在氧中燃烧时发热量大,燃烧产物的熔点低,流动性好,或具有一定的冲刷作用。最常用的是纯铁粉,其粉度一般为0.11mm或更细,以利于在切割反应区中充分燃烧。为了提高切割效率,改善切割质量,尤其在切割有色金属时,也采用在铁粉中加铝粉或其他金属粉末作熔剂。

采用氧-熔剂切割不锈钢、铸铁,其切割厚度大大提高,国内已切割到厚度1200mm。

所加熔剂的成分主要是由铁粉、铝粉、硼砂、石英砂等组成。附加的铁粉、铝粉在氧气流中燃烧时,产生大量的热量,对切割处进行补充加热,使难熔的氧化物熔化并与被切割金属表面的氧化物熔在一起。加入硼砂等可使熔渣变稀,使之易于流动,很容易从金属表面被吹走而打开氧气进入的通路,使切割过程正常进行。熔剂中除了铁粉外,还混入其他粉末状熔剂加入物,熔剂加入物的加入量根据被切割金属来确定。

切割不锈钢及高铬钢时,可采用铁粉作为熔剂。切割高铬钢时,也可采用铁粉与石英砂按1:1比例混合的熔剂。切割时,割嘴与金属表面距离应比普通气割时稍大些,约为15~20mm,否则容易引起回火。切割速度比切割普通低碳钢稍低一些,预热焰功率比普通气割高15%~25%。

氧-熔剂方法切割铸铁与切割高铬钢大致相同,但所用熔剂除铁粉外,还要加入30%~35%的磷铁粉。切割铸铁时,切割速度要比切割高铬钢时低50%~55%,气体及熔剂的消耗量比切割高铬钢时高2.5~3倍。

氧-熔剂方法切割紫铜、黄铜及青铜时,采用的熔剂成分是:铁粉70%~75%、铝粉15%~20%、磷铁10%~15%。切割时,先将被切割金属预热到200~400℃。割嘴和被切割金属之间的距离根据金属的厚度决定,一般在20~50mm之间。

5. 水解氢-氧火焰切割

以氧气和氢气混合燃烧形成的火焰作预热火焰而进行的氧气切割称为氧-氢切割。由于氢的总热值小,火焰温度低(仅2400℃),预热时间长(是氧-乙炔火焰的2倍)且安全性差,所以过去在工业生产上没有获得广泛应用。但由于氧-氢混合气燃烧的产物是水,对环境无污染。因此,近年来国内外相继开发出小型电解水的氢-氧发生器,并利用其产生的氢-氧混合气作气焊火焰和气割的预热火焰。于是出现了“水解氢-氧火焰切割”。

电解水氢-氧发生器示意如图4所示。其中电解槽是产生氢和氧的装置,为了加速水的电离,提高电解效率,通常在水中加入适量的强电解质,如koh。气体压力继电器用于控制发气量,当混合器内压力大于某一设定值时,即自动切断电源,停止电解;当压力降至一定值时,电源自动接通,电解槽继续产生气体。

采用水解氢-氢火焰切割时,可使用普通氧气切割用的割炬。这种切割方法的供气方式有多种,图5所示为最简单的一种。来自水解氢-氧发生器的混合气通入割炬的燃气通道,原预热氧气阀关闭。切割氧单独由氧气瓶供给。由于发生器产生的氢和氧的体积比是固定的(为0.5),所以混合气燃烧的火焰为中性焰,其燃烧性能不可调节。混合气流量可通过燃气阀或发生器的发气量进行调节。

应注意的是,氢气易爆炸,因此装置中设两道回火防止器,并在混合器上安装防爆片。一旦回火,能及时排放气体,防止逆燃火焰进入电解槽。

水解氢-氧火焰切割工艺和操作与一般氧-乙炔切割相同。

使用水解氢-氧火焰切割时要注意安全,发生器的各部件及其连接接头应密封,以免泄露造成事故。发生器应可靠接地,尽可能在室外作业,室内作业要有良好通风。工作开始前,先开割炬的混合气通路的阀门,排除里面的空气,待2~3min后才能点火切割。

第4篇 氧-丙烷气体切割操作规程

气割时使用的预热火焰为氧-丙烷火焰。根据使用效果、成本、气源情况等综合分析,丙烷是乙炔的比较理想的代用燃料,目前丙烷的使用量在所有乙炔代用燃气中用量最大。工业发达国家早已经使用丙烷(c3h8)这种质优价廉的气体进行火焰切割。氧-丙烷切割要求氧气纯度高于99.5%,丙烷气的纯度也要高于99.5%。一般采用g01-30型割炬配用gkj4型快速割嘴。

与氧-乙炔火焰切割相比,氧-丙烷火焰切割的特点如下:

① 切割面上缘不烧塌,熔化量少;切割面下缘黏性熔渣少,易于清除;

② 切割面的氧化皮易剥落,切割面的粗糙度相对较低;

③ 切割厚钢板时,不塌边、后劲足,切口表面光洁、棱角整齐,精度高;

④ 倾斜切割时,倾斜角度越大,切割难度越大;

⑤ 比氧-乙炔切割成本低,总成本约降低30%以上。

同氧-乙炔切割相似,氧-丙烷切割按使用的割炬分为射吸式割炬和等压式割炬,射吸式割炬大多用于手工切割,等压式割炬大多用于机械切割。

切割时,预热火焰开始用氧化焰(氧与丙烷混合比5:1),以缩短预热时间。正常切割时转用中性焰(混合比为3.5:1)。使用丙烷气切割与氧-乙炔切割的操作步骤基本一样,只是氧-丙烷火焰略弱,切割速度较慢一些。采取如下措施可使切割速度提高:

① 预热时,割炬不抖动,火焰固定于钢板边缘一点,适当加大氧气量,调节火焰成氧化焰;

② 换用丙烷快速割嘴使割缝变窄,适当提高切割速度;

③ 直线切割时,适当使割嘴后倾,可提高切割速度和切割质量。

气体切割规程4篇

有哪些气体切割是一种广泛应用于金属加工领域的工艺,它利用高温气体火焰或等离子弧来切割金属材料。以下是气体切割规程的主要组成部分:1.安全规定:确保操作者熟悉设备和操作流
推荐度:
点击下载文档文档为doc格式

相关气体切割信息

  • 气体切割作业安全操规程
  • 气体切割作业安全操规程50人关注

    有哪些气体切割作业安全规程涵盖了以下几个关键点:1.设备检查:确保所有切割设备处于良好工作状态,无泄漏、损坏或磨损。2.气体管理:正确存储和使用氧气、乙炔等切割气 ...[更多]

  • 气体切割规程4篇
  • 气体切割规程4篇17人关注

    有哪些气体切割是一种广泛应用于金属加工领域的工艺,它利用高温气体火焰或等离子弧来切割金属材料。以下是气体切割规程的主要组成部分:1.安全规定:确保操作者熟悉设 ...[更多]