欢迎光临管理范文网
当前位置:工作总结 > 总结大全 > 总结范文

一元一次方程总结(十六篇)

发布时间:2023-06-21 11:50:01 查看人数:19

一元一次方程总结

【第1篇 一元一次方程知识点总结

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则:

把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

七、有关常用应用类型题及各量之间的关系

1. 和、差、倍、分问题:

增长量=原有量×增长率 现在量=原有量+增长量

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.

2. 等积变形问题:

(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.

(2 )常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 v=底面积×高=s·h=πr2h

②长方体的体积 v=长×宽×高=abc

3. 劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4. 数字问题

(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.

5. 工程问题:

工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

6.行程问题:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7. 商品销售问题

(1)商品利润率=商品利润/商品成本×100%

(2)商品销售额=商品销售价×商品销售量

(3)商品的销售利润=(销售价-成本价)×销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率

(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

8. 储蓄问题

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税

⑵ 利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

(3)利润=每个期数内的利息/本金×100%

【第2篇 2023年中考数学知识点总结:一元一次方程

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

七、有关常用应用类型题及各量之间的关系

1. 和、差、倍、分问题:

增长量=原有量×增长率 现在量=原有量+增长量

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.

2. 等积变形问题:

(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.

(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 v=底面积×高=s·h=πr2h

②长方体的体积 v=长×宽×高=abc

3. 劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4. 数字问题

(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.

5. 工程问题:

工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

6.行程问题:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7. 商品销售问题

(1)商品利润率=商品利润/商品成本价_100%

(2)商品销售额=商品销售价×商品销售量

(3)商品的销售利润=(销售价-成本价)×销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率

(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

8. 储蓄问题

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税

⑵ 利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

(3)利润=每个期数内的利息/本金_100%

【第3篇 初中数学一元一次方程知识点总结

关于初中数学一元一次方程知识点总结

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的.解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则:

把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

七、有关常用应用类型题及各量之间的关系

1. 和、差、倍、分问题:

增长量=原有量×增长率 现在量=原有量+增长量

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.

2. 等积变形问题:

(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.

(2 )常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 v=底面积×高=s·h=πr2h

②长方体的体积 v=长×宽×高=abc

3. 劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4. 数字问题

(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.

5. 工程问题:

工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

6.行程问题:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7. 商品销售问题

(1)商品利润率=商品利润/商品成本×100%

(2)商品销售额=商品销售价×商品销售量

(3)商品的销售利润=(销售价-成本价)×销售量

(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率

(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

8. 储蓄问题

⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税

⑵ 利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

(3)利润=每个期数内的利息/本金×100%

【第4篇 一元一次方程的知识点总结

一元一次方程的知识点总结

一、方程的有关概念

1。方程:含有未知数的等式就叫做方程。

2。一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1。5_)=5等都是一元一次方程。

3。方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的'概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1。括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同。

2。括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变。

【第5篇 上海初中数学一元一次方程知识点总结

有关上海初中数学一元一次方程知识点总结

上海初中数学一元一次方程知识点总结

△=b2-4ac是一元一次方程的根,接下来为大家整合的是上海初中数学一元一次方程根的情况知识点总结。

一元一次方程根的情况

△=b2-4ac

当△>;0时,一元二次方程有2个不相等的实数根;

当△=0时,一元二次方程有2个相同的实数根;

当△<0时,一元二次方程没有实数根

温馨提示:大家一定要切记当△<0时,一元二次方程没有实数根。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为_轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的`规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做_轴或横轴,铅直的数轴叫做y轴或纵轴,_轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。

【第6篇 数学初一年级一元一次方程知识点总结

2.1 从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

【第7篇 初一数学一元一次方程知识点归纳总结

初一数学一元一次方程知识点归纳总结

2.1从算式到方程

2.1.1一元一次方程

含有未知数的等式叫做方程。

只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。

分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2.1.2等式的性质

等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。

等式的.性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起--一元一次方程的讨论⑴

把等式一边的某项变号后移到另一边,叫做移项。

2.3从买布问题说起--一元一次方程的讨论⑵

方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。

解方程就是要求出其中的未知数(例如_),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着_=a的形式转化,这个过程主要依据等式的性质和运算律等。

去分母:

⑴具体做法:方程两边都乘各分母的最小公倍数

⑵依据:等式性质2

⑶注意事项:①分子打上括号

②不含分母的项也要乘

2.4再探实际问题与一元一次方程

【第8篇 初中数学知识点一元一次方程总结

初中数学知识点一元一次方程总结

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成a_=b(a≠0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=ba)。

六、用方程思想解决实际问题的.一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系

1、和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变。

(3)只有调出没有调入,调出部分变化,其余不变。

4、数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

5、工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率×工作时间

6、行程问题:

(1)行程问题中的三个基本量及其关系:路程=速度×时间。

(2)基本类型有

①相遇问题;

②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

7、商品销售问题

有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×折扣率

8、储蓄问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

【第9篇 2023中考备考:初中数学知识点总结-一元一次方程

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50_=1800, 2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成a_ = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

七、有关常用应用类型题及各量之间的关系

1. 和、差、倍、分问题:

增长量=原有量×增长率 现在量=原有量+增长量

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.

2. 等积变形问题:

(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积.

(2 常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.

①圆柱体的体积公式 v=底面积×高=s·h=πr2h

②长方体的体积 v=长×宽×高=abc

3. 劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出;

(2)只有调入没有调出,调入部分变化,其余不变;

(3)只有调出没有调入,调出部分变化,其余不变

4. 数字问题

(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.

十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.

5. 工程问题:

工程问题:工作量=工作效率×工作时间

完成某项任务的各工作量的和=总工作量=1

6.行程问题:

路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题: 快行距+慢行距=原距

(2)追及问题: 快行距-慢行距=原距

(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度

逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

7. 商品销售问题

【第10篇 2023中考数学知识点总结:一元一次方程

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程。

2.一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程。例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程。

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解。

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程。⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论。

二、等式的性质

(1)等式两边都加上(或减去)同个数(或式子),结果仍相等。用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:把等式一边的某项变号后移到另一边,叫做移项。

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1.去分母(方程两边同乘各分母的最小公倍数)

2.去括号(按去括号法则和分配律)

3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4.合并(把方程化成a_=b(a≠0)形式)

5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解_=ba)。

六、用方程思想解决实际问题的一般步骤

1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系。

2.设:设未知数(可分直接设法,间接设法)。

3.列:根据题意列方程。

4.解:解出所列方程。

5.检:检验所求的解是否符合题意。

6.答:写出答案(有单位要注明答案)。

七、有关常用应用类型题及各量之间的关系

1、和、差、倍、分问题:

(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。

(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。

2、等积变形问题:

“等积变形”是以形状改变而体积不变为前提。常用等量关系为:

①形状面积变了,周长没变;

②原料体积=成品体积。

3、劳力调配问题:

这类问题要搞清人数的变化,常见题型有:

(1)既有调入又有调出。

(2)只有调入没有调出,调入部分变化,其余不变。

(3)只有调出没有调入,调出部分变化,其余不变。

4、数字问题

(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,0≤b≤9,0≤c≤9)则这个三位数表示为:100a+10b+c

(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。

5、工程问题:

工程问题中的三个量及其关系为:工作总量=工作效率×工作时间

6、行程问题:

(1)行程问题中的三个基本量及其关系:路程=速度×时间。

(2)基本类型有

①相遇问题;

②追及问题;常见的还有:相背而行;行船问题;环形跑道问题。

7、商品销售问题

有关关系式:

商品利润=商品售价—商品进价=商品标价×折扣率—商品进价

商品利润率=商品利润/商品进价

商品售价=商品标价×折扣率

8、储蓄问题

(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税

(2)利息=本金×利率×期数

本息和=本金+利息

利息税=利息×税率(20%)

【第11篇 七年级数学一元一次方程讲解知识点总结

七年级数学一元一次方程讲解知识点总结

1.等式:用=号连接而成的式子叫等式.

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:方程的解就能代入!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的.系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:a_+b=0(_是未知数,a、b是已知数,且a0).

8.一元一次方程解法的一般步骤:

化简方程----------分数基本性质

去分母----------同乘(不漏乘)最简公分母

去括号----------注意符号变化

移项----------变号(留下靠前)

合并同类项--------合并后符号

系数化为1---------除前面

10.列一元一次方程解应用题:

(1)读题分析法:多用于和,差,倍,分问题

仔细读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,减少,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法:多用于行程问题

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.

11.列方程解应用题的常用公式:

(1)行程问题:距离=速度时间

(2)工程问题:工作量=工效工时

工程问题常用等量关系:先做的+后做的=完成量

(3)顺水逆水问题:

顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;水流速度=(顺水速度-逆水速度)2

顺水逆水问题常用等量关系:顺水路程=逆水路程

(4)商品利润问题:售价=定价 , ;

利润问题常用等量关系:售价-进价=利润

【第12篇 数学5.2知识点总结:一元一次方程

数学5.2知识点总结:一元一次方程

成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家准备了必备的初一上册数学5.2知识点总结:一元一次方程,希望同学们不断取得进步!

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2.一元一次方程:只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50_=1800,2(_+1.5_)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c

(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

三、移项法则:把等式一边的'某项变号后移到另一边,叫做移项.

四、去括号法则

1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

以上就是数学网为大家整理的必备的初一上册数学5.2知识点总结:一元一次方程,怎么样,大家还满意吗?希望对大家的学习有所帮助,同时也祝大家学习进步,考试顺利!

【第13篇 人教版七年级上册数学解一元一次方程知识点总结

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

2.一元一次方程的标准形式:a_+b=0(_是未知数,a、b是已知数,且a≠0)。

3.条件:一元一次方程必须同时满足4个条件:

(1)它是等式;

(2)分母中不含有未知数;

(3)未知数次项为1;

(4)含未知数的项的系数不为0.

4.等式的性质:

等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。

等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。

等式的性质三:等式两边同时乘方(或开方),等式仍然成立。

解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。

5.合并同类项

(1)依据:乘法分配律

(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项

(3)合并时次数不变,只是系数相加减。

6.移项

(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。

(2)依据:等式的性质

(3)把方程一边某项移到另一边时,一定要变号。

7.一元一次方程解法的一般步骤:

使方程左右两边相等的未知数的值叫做方程的解。

一般解法:

(1)去分母:在方程两边都乘以各分母的最小公倍数;

(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)

(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号

(4)合并同类项:把方程化成a_=b(a≠0)的形式;

(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解_=b/a.

8.同解方程

如果两个方程的解相同,那么这两个方程叫做同解方程。

9.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

【第14篇 七年级数学一元一次方程知识点总结

七年级数学一元一次方程知识点总结

2.1从算式到方程

方程是含有未知数的等式。

方程都只含有一个未知数(元)_,未知数_的指数都是1(次),这样的方程叫做一元一次方程(linearequationwithoneunknown)。

解方程就是求出使方程中等号左右两边相等的未知数的'值,这个值就是方程的解(solution)。

等式的性质:

1.等式两边加(或减)同一个数(或式子),结果仍相等。

2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2从古老的代数书说起——一元一次方程的讨论(1)

把等式一边的某项变号后移到另一边,叫做移项。

【第15篇 初中数学一元一次方程的基础知识点总结

初中数学一元一次方程的基础知识点总结

据调查,“方程”一词来源于中国古算术书《九章算术》,在19世纪以前,方程一直是代数的核心内容。

一元一次方程

通过化简,只含有一个未知数,且含有未知数的最高次项的'次数是一的等式,叫一元一次方程。通常形式是a_+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。

一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将a_+b=0(其中_是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。

这里a是未知数的系数,b是常数,_的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。

步骤:去分母→去括号→移项→合并同类项→系数化为一。

在代数知识的入门学习中,我们就会接触关于一元一次方程的知识要领,其重要性是可见的。

【第16篇 初一年级上册数学第三单元《一元一次方程》知识点总结

初一年级上册数学第三单元《一元一次方程》知识点总结

1.等式与等量:用=号连接而成的式子叫等式.注意:等量就能代入!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的`未知数的值叫方程的解;注意:方程的解就能代入!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:a_+b=0(_是未知数,a、b是已知数,且a0).

8.一元一次方程的最简形式:a_=b(_是未知数,a、b是已知数,且a0).

9.一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解).

一元一次方程总结(十六篇)

1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)…
推荐度:
点击下载文档文档为doc格式

相关一元一次方程信息

  • 一元一次方程总结(十六篇)
  • 一元一次方程总结(十六篇)19人关注

    1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已 ...[更多]