- 目录
-
第1篇初二下册数学公式归纳总结 第2篇初二下册数学公式归纳总结2023 第3篇初二下册数学公式总结归纳 第4篇初二下册数学公式总结归纳2023 第5篇初二下册数学公式总结浙教版 第6篇初二下册数学知识点总结 第7篇2023初二下册数学知识点归纳总结 第8篇初二下册数学公式归纳总结苏教版 第9篇初二下册数学知识点总结人教版 第10篇初二下册数学知识点总结苏科版 第11篇初二下册数学公式总结(苏科版)
【第1篇 初二下册数学公式归纳总结
1、 过两点有且只有一条直线
2 、两点之间线段最短
3、同角或等角的补角相等
4 、同角或等角的余角相等
5 、过一点有且只有一条直线和已知直线垂直
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、同位角相等,两直线平行
10 、内错角相等,两直线平行
11 、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13 、两直线平行,内错角相等
14 、两直线平行,同旁内角互补
15 、定理 三角形两边的和大于第三边
16 、推论 三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18 、推论1 直角三角形的两个锐角互余
19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 、边边边公理(sss) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28 、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、 推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 、定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
【第2篇 初二下册数学公式归纳总结2023
乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 _1+_2=-b/a _1__2=c/a
注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0
注:方程有两个不等的实根 b2-4ac<0
注:方程没有实根,有共轭复数根
三角函数公式 两角和公式
sin(a+b)=sinacosb+cosasinb
sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb)
tan(a-b)=(tana-tanb)(1+tanatanb)
正弦定理 a/sina=b/sinb=c/sinc=2r
注:其中r表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosb
注:角b是边a和边c的夹角 圆的标准方程 (_-a)2+(y-b)2=r2
注: (a,b)是圆心坐标 圆的一般方程 _2+y2+d_+ey+f=0
注: d2+e2-4f>0 抛物线标准方程 y2=2px y2=-2px _2=2py _2=-2py
直棱柱侧面积 s=c_h
斜棱柱侧面积 s=c'_h
正棱锥侧面积 s=1/2c_h'
正棱台侧面积 s=1/2(c+c')h'
圆台侧面积 s=1/2(c+c')l=pi(r+r)l
球的表面积 s=4pi_r
圆柱侧面积 s=c_h=2pi_h
圆锥侧面积 s=1/2_c_l=pi_r_l
弧长公式 l=a_r a是圆心角的弧度数r>0
扇形公式 s=1/2_l_r
锥体体积公式 v=1/3_s_h
圆锥体体积公式
斜棱柱体积 v=s'l 注:其中,s'是直截面面积, l是侧棱长
柱体体积公式 v=s_h
圆柱体 v=pi_r2h
【第3篇 初二下册数学公式总结归纳
1、 过两点有且只有一条直线
2 、两点之间线段最短
3、同角或等角的补角相等
4 、同角或等角的余角相等
5 、过一点有且只有一条直线和已知直线垂直
6 、直线外一点与直线上各点连接的所有线段中,垂线段最短
7 、平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 、如果两条直线都和第三条直线平行,这两条直线也互相平行
9 、同位角相等,两直线平行
10 、内错角相等,两直线平行
11 、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13 、两直线平行,内错角相等
14 、两直线平行,同旁内角互补
15 、定理 三角形两边的和大于第三边
16 、推论 三角形两边的差小于第三边
17、三角形内角和定理三角形三个内角的和等于180°
18 、推论1 直角三角形的两个锐角互余
19 、推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 、推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 、全等三角形的对应边、对应角相等
22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 、推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 、边边边公理(sss) 有三边对应相等的两个三角形全等
26、斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 、定理1 在角的平分线上的点到这个角的两边的距离相等
28 、定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 、角的平分线是到角的两边距离相等的所有点的集合
30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、 推论1 三个角都相等的三角形是等边三角形
36 、推论 2 有一个角等于60°的等腰三角形是等边三角形
37 、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 、直角三角形斜边上的中线等于斜边上的一半
39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 、定理1 关于某条直线对称的两个图形是全等形
43 、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48、定理 四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
【第4篇 初二下册数学公式总结归纳2023
1、单独的一个数或一个字母也是单向式。
2、单向式中的数字因数叫做这个单向式的系数。
3、一个单向式中,所有字母的指数的和叫做这个单向式的次数。
4、几个单向式的和叫做多项式。在多项式中,每个单向式叫做多项式的项,其中,不含字母的项叫做常数项。
5、一般地,多项式里次数的项的次数,就是这个多项式的次数。
6、单项式和多项式统称整式。
7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
8、吧多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
9、几个整式相加减,通常用括号把每个整式括起来,再用加减号连接:然后去括号,合并同类项。
10、幂的乘方,底数不变,指数相同。
11、同底数幂相乘,底数不变,指数相加。
12、幂的乘方,底数不变,指数相乘。
13、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
14、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在一个单向式里含有的字母,则连同它的指数作为积的因式。
15、单向式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
16、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
17、两个数的和与这两个数的差的积=这两个数的平方差。这个公式叫做(乘法的)平方差公式。
18、两数和(或差)的平方=它们的平方和,加(或减)它们积的2倍。这两个公式叫做(乘法的)完全平方公式。
19、添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
20、同底数幂相加,底数不变,指数相减。
21、任何不等于0的数的0次幂都等于1.
22、单向式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
23、多项式除以单向式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
24、吧一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
25、ma+mb+mc,它的各项都有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。
这样就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
26、两个数的平方,等于这两个数的和与这两个数差的积。
27、两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
十字交叉双乘法没有公式,一定要说的话
那就是利用_2+(p+q)_+pq=(_+q)(_+p)其中pq为常数。
1.因式分解
即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域f上的次数大于零的多项式f(_),如果不计零次因式的差异,那么f(_)可以的分解为以下形式:
f(_)=ap1k1(_)p2k2(_)…piki(_)_,其中α是f(_)的次项的系数,
p1(_),p2(_)……pi(_)是首1互不相等的不可约多项式,并且pi(_)(i=1,2…,t)是f(_)的ki重因式。
(_)或叫做多项式f(_)的典型分解式。证明:可参见《高代》p52-53
初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等
要求为:要分到不能再分为止。
2.方法介绍
2.1提公因式法:
如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。
例15_3+10_2+5_
解析显然每项均含有公因式5_故可考虑提取公因式5_,接下来剩下_2+2_+1仍可继续分解。
解:原式=5_(_2+2_+1)
=5_(_+1)2
2.2公式法
即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)
说明由因式定理,即对一元多项式f(_),若f(b)=0,则一定含有一次因式_-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。
例2分解因式:①64_6-y12②1+_+_2+…+_15
解析各小题均可套用公式
解①64_6-y12=(8_3-y6)(8_3+y6)
=(2_-y2)(4_2+2_y2+y4)(2_+y2)(4_2-2_y2+y4)
②1+_+_2+…+_15=
=(1+_)(1+_2)(1+_4)(1+_8)
注多项式分解时,先分构造公式再解。
2.3分组分解法
当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。
例1分解因式:_15+m12+m9+m6+m3+1
解原式=(_15+m12)+(m9+m6)+(m3+1)
=m12(m3+1)+m6(m3+1)+(m3+1)
=(m3+1)(m12+m6++1)
=(m3+1)[(m6+1)2-m6]
=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)
例2分解因式:_4+5_3+15_-9
解析可根据系数特征进行分组
解原式=(_4-9)+5_3+15_
=(_2+3)(_2-3)+5_(_2+3)
=(_2+3)(_2+5_-3)
2.4十字相乘法
对于形如a_2+b_+c结构特征的二次三项式可以考虑用十字相乘法,
即_2+(b+c)_+bc=(_+b)(_+c)当_2项系数不为1时,同样也可用十字相乘进行操作。
例3分解因式:①_2-_-6②6_2-_-12
解①1_2
1_-3
原式=(_+2)(_-3)
②2_-3
3_4
原式=(2_-3)(3_+4)
注:“a_4+b_2+c”型也可考虑此种方法。
2.5双十字相乘法
在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4_2-4_y-3y2-4_+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:
(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图
(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含_的一次项
例5分解因式
① 4_2-4_y-3y2-4_+10y-3
② ②_2-3_y-10y2+_+9y-2
③ ab+b2+a-b-2
④ ④6_2-7_y-3y2-_z+7yz-2z2
解①原式=(2_-3y+1)(2_+y-3)
2_-3y 1
2_ y-3
②原式=(_-5y+2)(_+2y-1)
_-5y 2
_ 2y-1
③原式=(b+1)(a+b-2)
0ab 1
a b-2
④原式=(2_-3y+z)(3_+y-2z)
2_-3yz
3_-y-2z
说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。
如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)
④式三个字母满足二次六项式,把-2z2看作常数分解即可:
2.6拆法、添项法
对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之差或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。
例6分解因式:_3+3_2-4
解析法一:可将-4拆成-1,-3即(_3-1)+(3_2-3)
法二:添_4,再减_4,.即(_4+3_2-4)+(_3-_4)
法三:添4_,再减4_即,(_3+3_2-4_)+(4_-4)
法四:把3_2拆成4_2-_2,即(_3-_2)+(4_2-4)
法五:把_3拆为,4_2-3_3即(4_3-4)-(3_3-3_2)等
解(选择法四)原式=_3-_2+4_2-4
=_2(_-1)+4(_-1)(_+1)
=(_-1)(_2+4_+4)
=(_-1)(_+2)2
【第5篇 初二下册数学公式总结浙教版
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12 两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22 边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理(asa) 有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形
全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角
所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的
一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直
平分线
44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,
那么交点在对称轴上
45 逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两
个图形关于这条直线对称
46 勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,
那么这个三角形是直角三角形
48 定理 四边形的内角和等于360°
49 四边形的外角和等于360°
50 多边形内角和定理 n边形的内角的和等于(n-2)×180°
51 推论 任意多边的外角和等于360°
52 平行四边形性质定理 1 平行四边形的对角相等
53 平行四边形性质定理 2 平行四边形的对边相等
54 推论 夹在两条平行线间的平行线段相等
55 平行四边形性质定理 3 平行四边形的对角线互相平分
56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形
57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形
58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形
59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形
60 矩形性质定理 1 矩形的四个角都是直角
【第6篇 初二下册数学知识点总结
导语学习不光要有不怕困难,永不言败的精神,还有有勤奋的努力,科学家爱迪生曾说过:“天才就是1%的灵感加上99%的汗水,但那1%的灵感是最重要的,甚至比那99%的汗水都要重要。”即使我们的成绩不是很好,但只要有心想要学习,那么我们就应该笨鸟先飞,所谓'勤能补拙“没有人一出生就是天才,他们都是经过秦风的努力,才会成功的,所以我们不能坐等自己那天突然变成天才,而是要点燃自己的力量之火,寻找自己的天才之路,努力奋斗。以下是为您整理的《初二下册数学知识点总结》,供大家查阅。
解一元一次方程
1.等式与等量:用'='号连接而成的式子叫等式.注意:'等量就能代入'!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:'方程的解就能代入'!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:a_+b=0(_是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:a_=b(_是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
10.列一元一次方程解应用题:
(1)读题分析法:…………多用于'和,差,倍,分问题'
仔细读题,找出表示相等关系的关键字,例如:'大,小,多,少,是,共,合,为,完成,增加,减少,配套-----',利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于'行程问题'
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
【第7篇 2023初二下册数学知识点归纳总结
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/_(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
【第8篇 初二下册数学公式归纳总结苏教版
1、单独的一个数或一个字母也是单向式。
2、单向式中的数字因数叫做这个单向式的系数。
3、一个单向式中,所有字母的指数的和叫做这个单向式的次数。
4、几个单向式的和叫做多项式。在多项式中,每个单向式叫做多项式的项,其中,不含字母的项叫做常数项。
5、一般地,多项式里次数的项的次数,就是这个多项式的次数。
6、单项式和多项式统称整式。
7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
8、吧多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。
9、几个整式相加减,通常用括号把每个整式括起来,再用加减号连接:然后去括号,合并同类项。
10、幂的乘方,底数不变,指数相同。
11、同底数幂相乘,底数不变,指数相加。
12、幂的乘方,底数不变,指数相乘。
13、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
14、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在一个单向式里含有的字母,则连同它的指数作为积的因式。
15、单向式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
16、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
17、两个数的和与这两个数的差的积=这两个数的平方差。这个公式叫做(乘法的)平方差公式。
18、两数和(或差)的平方=它们的平方和,加(或减)它们积的2倍。这两个公式叫做(乘法的)完全平方公式。
19、添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。
20、同底数幂相加,底数不变,指数相减。
21、任何不等于0的数的0次幂都等于1.
22、单向式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
23、多项式除以单向式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
24、吧一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
25、ma+mb+mc,它的各项都有一个公共的因式m,我们把因式m叫做这个多项式各项的公因式。
这样就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
26、两个数的平方,等于这两个数的和与这两个数差的积。
27、两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。
十字交叉双乘法没有公式,一定要说的话
那就是利用_2+(p+q)_+pq=(_+q)(_+p)其中pq为常数。
1.因式分解
即和差化积,其最后结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域f上的次数大于零的多项式f(_),如果不计零次因式的差异,那么f(_)可以的分解为以下形式:
f(_)=ap1k1(_)p2k2(_)…piki(_)_,其中α是f(_)的次项的系数,
p1(_),p2(_)……pi(_)是首1互不相等的不可约多项式,并且pi(_)(i=1,2…,t)是f(_)的ki重因式。
(_)或叫做多项式f(_)的典型分解式。证明:可参见《高代》p52-53
初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等
要求为:要分到不能再分为止。
2.方法介绍
2.1提公因式法:
如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。
例15_3+10_2+5_
解析显然每项均含有公因式5_故可考虑提取公因式5_,接下来剩下_2+2_+1仍可继续分解。
解:原式=5_(_2+2_+1)
=5_(_+1)2
2.2公式法
即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)
说明由因式定理,即对一元多项式f(_),若f(b)=0,则一定含有一次因式_-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。
例2分解因式:①64_6-y12②1+_+_2+…+_15
解析各小题均可套用公式
解①64_6-y12=(8_3-y6)(8_3+y6)
=(2_-y2)(4_2+2_y2+y4)(2_+y2)(4_2-2_y2+y4)
②1+_+_2+…+_15=
=(1+_)(1+_2)(1+_4)(1+_8)
注多项式分解时,先分构造公式再解。
2.3分组分解法
当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。
例1分解因式:_15+m12+m9+m6+m3+1
解原式=(_15+m12)+(m9+m6)+(m3+1)
=m12(m3+1)+m6(m3+1)+(m3+1)
=(m3+1)(m12+m6++1)
=(m3+1)[(m6+1)2-m6]
=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)
例2分解因式:_4+5_3+15_-9
解析可根据系数特征进行分组
解原式=(_4-9)+5_3+15_
=(_2+3)(_2-3)+5_(_2+3)
=(_2+3)(_2+5_-3)
2.4十字相乘法
对于形如a_2+b_+c结构特征的二次三项式可以考虑用十字相乘法,
即_2+(b+c)_+bc=(_+b)(_+c)当_2项系数不为1时,同样也可用十字相乘进行操作。
例3分解因式:①_2-_-6②6_2-_-12
解①1_2
1_-3
原式=(_+2)(_-3)
②2_-3
3_4
原式=(2_-3)(3_+4)
注:“a_4+b_2+c”型也可考虑此种方法。
2.5双十字相乘法
在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4_2-4_y-3y2-4_+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:
(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图
(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与第一个十字中左端的两个因式交叉之积的和等于原式中含_的一次项
例5分解因式
① 4_2-4_y-3y2-4_+10y-3
② ②_2-3_y-10y2+_+9y-2
③ ab+b2+a-b-2
④ ④6_2-7_y-3y2-_z+7yz-2z2
解①原式=(2_-3y+1)(2_+y-3)
2_-3y 1
2_ y-3
②原式=(_-5y+2)(_+2y-1)
_-5y 2
_ 2y-1
③原式=(b+1)(a+b-2)
0ab 1
a b-2
④原式=(2_-3y+z)(3_+y-2z)
2_-3yz
3_-y-2z
说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。
如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)
④式三个字母满足二次六项式,把-2z2看作常数分解即可:
2.6拆法、添项法
对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之差或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。
例6分解因式:_3+3_2-4
解析法一:可将-4拆成-1,-3即(_3-1)+(3_2-3)
法二:添_4,再减_4,.即(_4+3_2-4)+(_3-_4)
法三:添4_,再减4_即,(_3+3_2-4_)+(4_-4)
法四:把3_2拆成4_2-_2,即(_3-_2)+(4_2-4)
法五:把_3拆为,4_2-3_3即(4_3-4)-(3_3-3_2)等
解(选择法四)原式=_3-_2+4_2-4
=_2(_-1)+4(_-1)(_+1)
=(_-1)(_2+4_+4)
=(_-1)(_+2)2
2.7换元法
换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此
种方法对于某些特殊的多项式因式分解可以起到简化的效果。
例7分解因式:
(_+1)(_+2)(_+3)(_+4)-120
解析若将此展开,将十分繁琐,但我们注意到
(_+1)(_+4)=_2+5_+4
(_+2)(_+3)=_2+5_+6
故可用换元法分解此题
解原式=(_2+5_+4)(_2+5_+6)-120
令y=_2+5_+5则原式=(y-1)(y+1)-120
=y2-121
=(y+11)(y-11)
=(_2+5_+16)(_2+5_-6)
=(_+6)(_-1)(_2+5_+16)
注在此也可令_2+5_+4=y或_2+5_+6=y或_2+5_=y请认真比较体会哪种换法更简单?
2.8待定系数法
待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。
例7分解因式:2a2+3ab-9b2+14a+3b+20
分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法
先分解2a2+3ab+9b2=(2a-3b)(a+3b)
解设可设原式=(2a-3b+m)(a+3b+n)
=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………
比较两个多项式(即原式与_式)的系数
m+2n=14(1)m=4
3m-3n=-3(2)=>
mn=20(3)n=5
∴原式=(2_-3b+4)(a+3b+5)
注对于(_)式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n
令a=1,b=0,m+2n=14m=4
=>
令a=0,b=1,m=n=-1n=5
2.9因式定理、综合除法分解因式
对于整系数一元多项式f(_)=an_n+an-1_n-1+…+a1_+a0
由因式定理可先判断它是否含有一次因式(_-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数
若f=0,则一定会有(_-)再用综合除法,将多项式分解
例8分解因式_3-4_2+6_-4
解这是一个整系数一元多项式,因为4的正约数为1、2、4
∴可能出现的因式为_±1,_±2,_±4,
∵f(1)≠0,f(1)≠0
但f(2)=0,故(_-2)是这个多项式的因式,再用综合除法
21-46-4
2-44
1-220
所以原式=(_-2)(_2-2_+2)
当然此题也可拆项分解,如_3-4_2+4_+2_-4
=_(_-2)2+(_-2)
=(_-2)(_2-2_+2)
【第9篇 初二下册数学知识点总结人教版
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量_与y,如果对于_的每一个值,y都有确定的值与它对应,那么就说_是自变量,y是_的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量_的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
【第10篇 初二下册数学知识点总结苏科版
1. 分式的定义:如果a、b表示两个整式,并且b中含有字母,那么式子a/b 叫做分式。
分式有意义的条件是分母不为零;分式值为零的条件是分子为零且分母不为零;
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键是先将各分式分母分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减,结果化简;
异分母的分式相加减,先通分,变为同分母分式,然后再加减,结果化简。
混合运算:运算顺序和整式一样。能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂都等于1.
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n是整数)
(1)同底数的幂的乘法:底数不变指数相加 ;(2)幂的乘方: ;
(3)积的乘方: ;(4)同底数的幂的除法: ( a≠0);
(5)商的乘方: ;(b≠0)
7. 分式方程:含分式,并且分母中含有未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同时乘以一个整式(最简公分母),把分式方程转
化为整式方程。
解分式方程时,因为方程两边要同时乘以最简公分母,而最简公分母有可能为0,这样就可
能产生增根,因此解分式方程时一定要验根,否则将会被扣分。
解分式方程的一般步骤 :
(1) 方程能化简的要先化为最简方程;
(2) 方程两边同时乘以最简公分母,约分后化为整式方程;
(3) 解整式方程;
(4) 验根.
(5)写出答案
特别提示:增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所得的整式方程的根。
解分式方程的检验方法:将正确解出的整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列分式方程应用题的步骤是(1)审;(2)设;(3)列;(4)解;(5)验;(6)答.
应用题的几种基本类型及基本公式
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题 在数字问题中要掌握十进制数的表示法.
(3)工程问题 基本公式:工作量=工时×工效.
(4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水.
8.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
第十七章 反比例函数
1.定义:形如y= _/k(k为常数,k≠0)的函数称为反比例函数。
其他形式_y=k
2. 图像形状:反比例函数的图像是双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=_和 y=-_;对称中心是:原点
3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随_值的增大而减小;
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随_值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
第十八章 勾股定理
1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
第十九章 四边形
平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
推论:经过三角形一边的中点且平行于另一边的直线必平分第三边
定理:直角三角形斜边上的中线等于斜边的一半。
逆定理:如果三角形一边上的中线等于这边的一半,那么这个三角形是rt三角形;
定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边是斜边的一半;
逆定理:在直角三角形中,如果一条直角边是斜边的一半,那么它所对的锐角是30°;
矩形的定义:有一个角是直角的平行四边形。
矩形的性质: 矩形的四个角都是直角;矩形的对角线相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义 :一组邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理: 1.一组邻边相等的平行四边形是菱形。
2.对角线互相垂直的平行四边形是菱形。
3.四条边相等的四边形是菱形。
注意:菱形的面积等于两条对角线乘积的一半; s=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形性质:四条边都相等,四个角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理: 1.邻边相等的矩形是正方形。
2、 有一个角是直角的菱形是正方形。
3、 两条对角线互相垂直平分且相等的四边形是正方形。
梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形;
推论:两条对角线相等的梯形是等腰梯形。
梯形的中位线定理:梯形的中位数平行于两底且等于两底和的一半;
推论:梯形两对角线中点的连线平行于两底且等于两底差的一半。
解梯形问题常用的辅助线:
平移腰--构造平行四边形
作高--构造矩形与rt三角形
平移对角线--- 构造等腰三角形
延长两腰---构造等腰三角形
过一腰的中点连接上下底---转化为与梯形等积的三角形
线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。
重心的应用:过平行四边形重心的任意一条直线将平行四边形的面积两等分;
三角形的三条中线交于一点,这一点就是三角形的重心。
重心定理:三角形的三条中线交于一点,这一点到顶点的距离等于它到对边中点距离的两倍。
宽和长的比是 (约为0.618)的矩形叫做黄金矩形。
中点四边形及应用:顺次连接任意四边形各边中点所得的四边形是平行四边形;
顺次连接对角线相等的四边形各边中点所得的四边形是菱形;
顺次连接对角线垂直的四边形各边中点所得的四边形是矩形;
顺次连接对角线垂直且相等的四边形各边中点所得的四边形是正方形。
第二十章 数据的分析
1.加权平均数:加权平均数的计算公式。(_1w1+_2w2+…+_nwn)/(w1+w2+…wn),其中w1、w2、…wn叫做权。
举例:如求平均速度要用总路程除以总时间;求全校的数学平均分要用全校的数学总分数除以全校总人数
权的理解:反映了某个数据在整个数据中的重要程度。
特别关注:权没有直接给出具体数量,而是以比或百分比的形式出现及频数分布表求加权平均数的方法。
平均数往往会受极端值的影响;
2、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
中位数的意义是:在中位数以上(或以下)的数据个数各占一半。
一组数据的中位数是的,且不受极端值的影响。
举例:有7个人参加演讲比赛,要表彰前三名,在知道了某人的得分后,还要知道中位数后才能确定是否获奖。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。 一组数据的众数可以是多个数且不受极端值的影响举例:某商场的卖鞋(或衬衣)专柜,在进货时就必须要关注众数。
4.一组数据中的数据与最小数据的差叫做这组数据的极差(range)。
极差能够最简单的反应出一组数据的波动范围。求方差的公式:s2=1/n[(_1-_)2+(_2-_)2+…+(_n-_)2]
5. 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 举例:在选拔射击运动员时往往要考虑其稳定性。数据的收集与整理的步骤:(1)收集数据 (2)整理数据 (3)描述数据
(4)分析数据 (5)撰写调查报告 (6)交流
【第11篇 初二下册数学公式总结(苏科版)
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等