- 目录
-
第1篇初中数学轴对称画法的重要知识点总结 第2篇初二数学知识点总结:轴对称 第3篇2023中考数学知识点总结:平移、轴对称 第4篇初中数学轴对称知识点的归纳总结 第5篇初二数学知识点:轴对称总结 第6篇轴对称知识点总结 第7篇五年级数学轴对称的知识点总结 第8篇初中数学轴对称的性质定理知识点总结 第9篇初中数学轴对称的几何知识点总结 第10篇数学轴对称知识点总结
【第1篇 初中数学轴对称画法的重要知识点总结
初中数学轴对称画法的重要知识点总结
动物中也体现了轴对称的美,比如蝴蝶就是轴对称的动物。
轴对称图形画法
1、找出所给图形的关键点。
2、找出图形关键点到对称轴的'距离。
3、找关键点的对称点。
4、按照所给图形的顺序连接各点。
画法
1、找出图形的一对对称点。
2、连接对称点。
3、过这条线段的中点作这条线段的垂线。
看过上面的轴对称图形画法后,聪明的大家都会了吧。
【第2篇 初二数学知识点总结:轴对称
一、定义
1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点
1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
等腰三角形两腰上的高或中线相等。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。]
8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]
9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。
11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
三、注意
1、(_,y)关于原点对称(-_。-y)。关于_轴对称(_,-y)。关于y轴对称(-_,y)
2、用坐标表示轴对称。
【第3篇 2023中考数学知识点总结:平移、轴对称
平移
1、定义
把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质
(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动
(2)连接各组对应点的线段平行(或在同一直线上)且相等
轴对称
1、定义
把一个图形沿着某条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,该直线叫做对称轴。
2、性质
(1)关于某条直线对称的两个图形是全等形。
(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。
(3)两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。
3、判定
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4、轴对称图形
把一个图形沿着某条直线折叠,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
【第4篇 初中数学轴对称知识点的归纳总结
初中数学轴对称知识点的归纳总结
初中数学轴对称知识点归纳
轴对称章节要求正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。那么接下来的轴对称内容请同学们认真记忆了。
轴对称
1.知识概念
1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,
7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的`直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美。接下来的初中数学知识更加有吸引力,请大家继续关注哦。
【第5篇 初二数学知识点:轴对称总结
一、定义
1、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。这条直线就是它的对称轴。我们也说这个图形关于这条直线[成轴]对称。
2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。
3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
4、有两边相等的三角形叫做等腰三角形。
5、三条边都相等的三角形叫做等边三角形。
二、重点
1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。
2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。
6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。新图形上的每一点,都是原图形上的某一点关于直线的对称点。连接任意一对对应点的线段被对称轴垂直平分。
7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。
等腰三角形两腰上的高或中线相等。
等腰三角形两底角平分线相等。
等腰三角形底边上高的点到两腰的距离之和等于底角到一腰的距离。
等腰三角形顶角平分线,底边上的高,底边上的中线到两腰的距离相等。]
8、等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等[等角对等边]。
[如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。]
9、等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°。
10、等边三角形的判定:等边三角形的三个内角都相等,并且每一个角都等于60°。三个角都相等的三角形是等边三角形。有一个角是60°的等腰三角形是等边三角形。
11、直角三角形的性质之一:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
12、在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。
三、注意
1、(_,y)关于原点对称(-_。-y)。关于_轴对称(_,-y)。关于y轴对称(-_,y)
2、用坐标表示轴对称。
【第6篇 轴对称知识点总结
轴对称知识点总结
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(_,y)关于_轴对称的点的坐标为(_,-y)
点(_,y)关于y轴对称的.点的坐标为(-_,y)
点(_,y)关于原点轴对称的点的坐标为(-_,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为三线合一。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60,
12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。
有一个角是60的等腰三角形是等边三角形
有两个角是60的三角形是等边三角形。
13.直角三角形中,30角所对的直角边等于斜边的一半。
14.直角三角形斜边上的中线等于斜边的一半
【第7篇 五年级数学轴对称的知识点总结
五年级数学关于轴对称的知识点总结
1.轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:折痕所在的这条直线叫做对称轴。如下图所示:
2.轴对称图形的性质:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3.轴对称的性质:
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的'距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4.轴对称图形的作用:
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5.因数:
整数b能整除整数a,a叫作b的倍数,b就叫做a的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
【第8篇 初中数学轴对称的性质定理知识点总结
初中数学轴对称的性质定理知识点总结
其实在建筑中为了美观,我们会使用轴对称,比如天安门,对称就显的美观漂亮。
轴对称的性质定理
性质
1.对称轴是一条直线。
2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的.距离相等。
3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
6.图形对称。
定理及其逆定理
定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形。
【第9篇 初中数学轴对称的几何知识点总结
初中数学轴对称的几何知识点总结
我们的天安门为了美观,对称就显的美观漂亮,飞机的两翼的对称为了保持平衡。
轴对称
在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,
这样的图形叫做轴对称图形(a_ial symmetric figure),这条直线叫做对称轴(a_is of symetric),并且对称轴用点画线表示;这时,我们也说这个图形与这条直线对称。比如说圆、正方形、等腰梯形等。
举例
有的.轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。圆有无数条对称轴,都是经过圆心的直线。
要特别注意线段,有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。
性质
1.对称轴是一条直线。
2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。
3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
6.图形对称。
定理及其逆定理 定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形。
【第10篇 数学轴对称知识点总结
数学轴对称知识点总结
下面是小编为了帮助同学们学习数学知识而整理的初二上册数学轴对称知识点总结,希望可以帮助到同学们!
1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.角平分线上的点到角两边距离相等。
4.线段垂直平分线上的任意一点到线段两个端点的距离相等。
5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
6.轴对称图形上对应线段相等、对应角相等。
7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
8.点(_,y)关于_轴对称的点的坐标为(_,-y)
点(_,y)关于y轴对称的点的坐标为(-_,y)
点(_,y)关于原点轴对称的点的坐标为(-_,-y)
9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)
等腰三角形的顶角平分线、底边上的高、底边上的'中线互相重合,简称为“三线合一”。
10.等腰三角形的判定:等角对等边。
11.等边三角形的三个内角相等,等于60°,
12.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的等腰三角形是等边三角形
有两个角是60°的三角形是等边三角形。
13.直角三角形中,30°角所对的直角边等于斜边的一半。
14.直角三角形斜边上的中线等于斜边的一半
由小编整理的初二上册数学轴对称知识点总结就到这里了,希望同学们喜欢!