欢迎光临管理范文网
当前位置:工作总结 > 总结大全 > 总结范文

高一数学函数总结(三篇)

发布时间:2023-02-21 17:06:15 查看人数:66

高一数学函数总结

【第1篇 总结高一数学函数的知识点

1.高中数学必修一函数的基本性质——函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数_,在集合b中都有唯一确定的数f(_)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作: y=f(_),_∈a.其中,_叫做自变量,_的取值范围a叫做函数的定义域;与_的值相对应的y值叫做函数值,函数值的集合{f(_)| _∈a }叫做函数的值域.

注意:如果只给出解析式y=f(_),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数 _ 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1) 分式的分母不等于零;

(2) 偶次方根的被开方数不小于零;

(3) 对数式的真数必须大于零;

(4) 指数、对数式的底必须大于零且不等于 1.

(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 _ 的值组成的集合 .

(6)指数为零底不可以等于零

构成函数的三要素:定义域、对应关系和值域

再注意:

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

值域补充

( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .

3. 高中数学必修一函数的基本性质——函数图象知识归纳

(1) 定义:在平面直角坐标系中,以函数 y=f(_) , (_ ∈a)中的 _ 为横坐标,函数值 y 为纵坐标的点 p(_ , y) 的集合 c ,叫做函数 y=f(_),(_ ∈a)的图象.

c 上每一点的坐标 (_ , y) 均满足函数关系 y=f(_) ,反过来,以满足 y=f(_) 的每一组有序实数对 _ 、 y 为坐标的点 (_ , y) ,均在 c 上 . 即记为 c={ p(_,y) | y= f(_) , _ ∈a }

图象 c 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .

(2) 画法

a、描点法:根据函数解析式和定义域,求出 _,y 的一些对应值并列表,以 (_,y) 为坐标在坐标系内描出相应的点 p(_, y) ,最后用平滑的曲线将这些点连接起来 .

b、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3) 作用:

1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的`思路。提高解题的速度。

发现解题中的错误。

4.高中数学必修一函数的基本性质——快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.高中数学必修一函数的基本性质——什么叫做映射

一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素_,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a b为从集合a到集合b的一个映射。记作“f:a b”

给定一个集合a到b的映射,如果a∈a,b∈b.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合a、b及对应法则f是确定的;②对应法则有“方向性”,即强调从集合a到集合b的对应,它与从b到a的对应关系一般是不同的;③对于映射f:a→b来说,则应满足:(ⅰ)集合a中的每一个元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中对应的象可以是同一个;(ⅲ)不要求集合b中的每一个元素在集合a中都有原象。

常用的函数表示法及各自的优点:

函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数 (参见课本p24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果 y=f(u),(u ∈m),u=g(_),(_∈a),则 y=f[g(_)]=f(_),(_∈a) 称为f、g的复合函数。

高一数学人教版必修一第一单元知识点就为大家介绍到这里,希望对你有所帮助。

【第2篇 高一数学函数与方程知识点的总结

一、函数的概念与表示

1、映射

(1)映射:设a、b是两个集合,如果按照某种映射法则f,对于集合a中的任一个元素,在集合b中都有唯一的元素和它对应,则这样的对应(包括集合a、b以及a到b的对应法则f)叫做集合a到集合b的映射,记作f:ab。 注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素 ①定义域②对应法则③值域

二、函数的解析式与定义域

1、求函数定义域的主要依据: (1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

2求函数定义域的两个难点问题

(1) 已知f(_)的定义域是[-2,5],求f(2_+3)的定义域。

(2) 已知f(2_-1)的定义域是[-1,3],求f_的定义域

三、函数的值域

1求函数值域的'方法

①直接法:从自变量_的范围出发,推出y=f(_)的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且_r的分式;

④分离常数:适合分子分母皆为一次式(_有范围限制时要画图); ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其

四.函数的奇偶性

1.定义: 设y=f(_),_a,如果对于任意_a,都有f(?_)?f(_),则称y=f(_)为偶函数。

如果对于任意_a,都有f(?_)??f(_),则称y=f(_)为奇

函数。 2.性质:

①y=f(_)是偶函数?y=f(_)的图象关于y轴对称, y=f(_)是奇函数?y=f(_)的图象关于原点对称,

②若函数f(_)的定义域关于原点对称,则f(0)=0

高一数学函数与方程知识点就为大家介绍到这里,希望对你有所帮助。

【第3篇 高一数学函数与方程知识点总结

高一数学函数与方程知识点总结

一、函数的概念与表示

1、映射

(1)映射:设a、b是两个集合,如果按照某种映射法则f,对于集合a中的任一个元素,在集合b中都有唯一的元素和它对应,则这样的对应(包括集合a、b以及a到b的对应法则f)叫做集合a到集合b的映射,记作f:ab。

注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射

2、函数

构成函数概念的三要素 ①定义域②对应法则③值域

两个函数是同一个函数的条件:三要素有两个相同

二、函数的解析式与定义域

1、求函数定义域的.主要依据:

(1)分式的分母不为零;

(2)偶次方根的被开方数不小于零,零取零次方没有意义;

(3)对数函数的真数必须大于零;

(4)指数函数和对数函数的底数必须大于零且不等于1;

三、函数的值域

1求函数值域的方法

①直接法:从自变量_的范围出发,推出y=f(_)的取值范围,适合于简单的复合函数;

②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且 r的分式;

④分离常数:适合分子分母皆为一次式(_有范围限制时要画图);

⑤单调性法:利用函数的单调性求值域;

⑥图象法:二次函数必画草图求其值域;

⑦利用对号函数

⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

四.函数的奇偶性

1.定义:

设y=f(_),_a,如果对于任意 a,都有 ,则称y=f(_)为偶函数。

如果对于任意 a,都有 ,则称y=f(_)为奇

函数。

2.性质:

①y=f(_)是偶函数 y=f(_)的图象关于 轴对称, y=f(_)是奇函数 y=f(_)的图象关于原点对称,

②若函数f(_)的定义域关于原点对称,则f(0)=0

③奇奇=奇 偶偶=偶 奇奇=偶 偶偶=偶 奇偶=奇[两函数的定义域d1 ,d2,d1d2要关于原点对称]

3.奇偶性的判断

①看定义域是否关于原点对称 ②看f(_)与f(-_)的关系

五、函数的单调性

1、函数单调性的定义:

2 设 是定义在m上的函数,若f(_)与g(_)的单调性相反,则 在m上是减函数;若f(_)与g(_)的单调性相同,则 在m上是增函数。

高一数学函数总结(三篇)

1.高中数学必修一函数的基本性质——函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f…
推荐度:
点击下载文档文档为doc格式

相关高一数学函数信息

  • 高一数学函数总结(三篇)
  • 高一数学函数总结(三篇)66人关注

    1.高中数学必修一函数的基本性质——函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对 ...[更多]