欢迎光临管理范文网
当前位置:工作总结 > 总结大全 > 总结范文

初一下册数学总结(十五篇)

发布时间:2023-02-20 08:27:03 查看人数:30

初一下册数学总结

【第1篇 北师大版初一下册数学知识点总结

北师大版初一下册数学知识点总结

相交线

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。

平行线及其判定

性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的性质

性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

平移

向左平移a个单位长度,可以得到对应点(_-a,y)

向上平移b个单位长度,可以得到对应点(_,y+b)

向下平移b个单位长度,可以得到对应点(_,y-b)

【第2篇 初一下册数学知识点总结沪教版

一、整式

单项式和多项式统称整式。

a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。

b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。

c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)

a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数项的次数,叫做这个多项式的次数.

b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中的那一项次数.

a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。

二、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

d)当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为整数);

e)公式还可以逆用:(m、n均为整数)

a)幂的乘方法则:(m,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

b)(m,n都为整数)

c)底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3

d)底数有时形式不同,但可以化成相同。

e)要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

f)积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn(n为正整数)。

g)幂的乘方与积乘方法则均可逆向运用。

五、同底数幂的除法

a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).

b)在应用时需要注意以下几点:

1)法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。

2)任何不等于0的数的0次幂等于1,即a0=1(a≠0),如100=1,(-2.50=1),则00无意义。

c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如,d)运算要注意运算顺序。

六、整式的乘法

单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

b)相同字母相乘,运用同底数幂的乘法法则;

c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

d)单项式乘法法则对于三个以上的单项式相乘同样适用;

e)单项式乘以单项式,结果仍是一个单项式。

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;

c)在混合运算时,要注意运算顺序。

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

b)多项式相乘的结果应注意合并同类项;

c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(_+a)(_+b)=_2+(a+b)_+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(m_+a)和(n_+b)相乘可以得到。

七.平方差公式

两数和与这两数差的积,等于它们的平方差,即。

其结构特征是:

a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

b)公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

八、完全平方公式

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;

口诀:首平方,尾平方,2倍乘积在中央;

a)公式左边是二项式的完全平方;

b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

九、整式的除法

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

【第3篇 苏科版初一下册数学知识点总结

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

【第4篇 初一下册数学知识点总结北师大版

导语学得越多,懂得越多,想得越多,领悟得就越多,就像滴水一样,一滴水或许很快就会被太阳蒸发,但如果滴水不停的滴,就会变成一个水沟,越来越多,越来越多……本篇文章是为您整理的《初一下册数学知识点总结北师大版》,供大家借鉴。

初一下册数学知识点总结北师大版篇一

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

十、零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(_+a)(_+b)=_2+(a+b)_+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

(a+b)·(a-b)的形式,然后看a2与b2是否容易计算。

初一下册数学知识点总结北师大版篇二

一、同底数幂的乘法

(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

b)指数是1时,不要误以为没有指数;

c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

二、幂的乘方与积的乘方

三、同底数幂的除法

(1)运用法则的前提是底数相同,只有底数相同,才能用此法则

(2)底数可以是具体的数,也可以是单项式或多项式

(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负

四、整式的乘法

1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

如:bca22-的系数为2-,次数为4,单独的一个非零数的次数是0。

2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数项的次数叫多项式的次数。

五、平方差公式

表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式

公式运用

可用于某些分母含有根号的分式:

1/(3-4倍根号2)化简:

六、完全平方公式

完全平方公式中常见错误有:

①漏下了一次项

②混淆公式

③运算结果中符号错误

④变式应用难于掌握。

七、整式的除法

1、单项式的除法法则

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式。

初一下册数学知识点总结北师大版篇三

1.1正数与负数

在以前学过的0以外的数前面加上负号“-”的数叫负数(negativenumber)。

与负数具有相反意义,即以前学过的0以外的数叫做正数(positivenumber)(根据需要,有时在正数前面也加上“+”)。

1.2有理数

正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

整数和分数统称有理数(rationalnumber)。

通常用一条直线上的点表示数,这条直线叫数轴(numbera_is)。

数轴三要素:原点、正方向、单位长度。

在直线上任取一个点表示数0,这个点叫做原点(origin)。

只有符号不同的两个数叫做互为相反数(oppositenumber)。(例:2的相反数是-2;0的相反数是0)

数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue),记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3有理数的加减法

有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(basenumber),n叫做指数(e_ponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significantdigit)。

【第5篇 初一下册数学知识点总结归纳(湘教版 )

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

第八章 二元一次方程组

一、知识网络结构

二、知识要点

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

第九章 不等式与不等式组

一、知识网络结构

二、知识要点

1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:

①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

第十章 数据的收集、整理与描述

知识要点

1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图 。

【第6篇 初一下册数学知识点总结归纳

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

第八章 二元一次方程组

一、知识网络结构

二、知识要点

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

第九章 不等式与不等式组

一、知识网络结构

二、知识要点

1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:

①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

第十章 数据的收集、整理与描述

知识要点

1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图 。

【第7篇 新人教版初一下册数学知识点总结归纳

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

【第8篇 初一下册数学知识点总结归纳苏教版

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,ab⊥cd。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。 两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.3平行线的性质

平行线具有性质:

性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。 5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各

组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第六章 《平面直角坐标系》

6.1平面直角坐标系 6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。 6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为_轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了ⅰ、ⅱ、ⅲ、ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。 6.2坐标方法的简单应用 6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下: ⑴建立坐标系,选择一个适当的参照点为原点,确定_轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 6.2.2用坐标表示平移

在平面直角坐标系中,将点(_,y)向右(或左)平移a个单位长度,可以得到对应点(_+a,y)(或(_-a,y));将点(_,y)向上(或下)平移b个单位长度,可以得到对应点(_,y+b)(或(_,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 《三角形》

7.1与三角形有关的线段 7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是a、b、c的三角形,记作“△abc”,读作“三角形abc”。 三角形两边的和大于第三边。 7.1.2三角形的高、中线和角平分线 7.1.3三角形的稳定性

三角形具有稳定性。 7.2与三角形有关的角 7.2.1三角形的内角

三角形的内角和等于180。 7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。 三角形的一个外角等于与它不相邻的两个内角的和。 三角形的一个外角大于与它不相邻的任何一个内角。 7.3多边形及其内角和 7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

多边形的内角和n边形的内角和公式:180(n-2)

多边形的外角和等于360。

1 三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

☆2判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b

☆3第三边取值范围: a-b < c<13. 4 对应周长取值范围

若两边分别为a,b则周长的取值范围是 2a<2(a+b) a为较长边。

如两边分别为5和7则周长的取值范围是 14<24.

☆5 三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。

6“三线”特征:☆三角形的中线

①平分底边。

②分得两三角形面积相等并等于原三角形面积的一半。

③分得两三角形的周长差等于邻边差。

☆7 直角三角形:

①两锐角互余。

② 30度所对的直角边是斜边的一半。

③三条高交于三角形的一个顶点。

④ ∠a=1/2∠b=1/3∠c

⑤ ∠a: ∠b: ∠c=1:2:3

⑥ ∠a=∠b+∠c ⑦ ∠a: ∠b: ∠c=1:1:2 ⑧ ∠a=90-∠b

☆8 相关命题:

→1 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

→2 锐角三角形中的锐角的取值范围是60≤_<90 。锐角不小于60度。 →3 任意一个三角形两角平分线的夹角=90+第三角的一半。

→4 钝角三角形有两条高在外部。

→5 全等图形的大小(面积、周长)、形状都相同。

→6 面积相等的两个三角形不一定是全等图形。 →7 能够完全重合的两个图形是全等图形。

→8 三角形具有稳定性。

9 三条边分别对应相等的两个三角形全等。

10 三个角对应相等的两个三角形不一定全等。

11 两个等边三角形不一定全等。

12 两角及一边对应相等的两个三角形全等。

13 两边及一角对应相等的两个三角形不一定全等。 14 两边及它们的夹角对应相等的两个三角形全等。 15 两条直角边对应相等的两个直角三角形全等。

16 一条斜边和一直角边对应相等的两个三角形全等。

17 一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18 一角和一边对应相等的两个直角三角形不一定全等。

19 有一个角是60的等腰三角形是等边三角形。

【第9篇 初一下册数学知识点总结归纳浙教版

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

第八章 二元一次方程组

一、知识网络结构

二、知识要点

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

第九章 不等式与不等式组

一、知识网络结构

二、知识要点

1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:

①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

第十章 数据的收集、整理与描述

知识要点

1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图 。

【第10篇 初一下册数学知识点总结归纳沪教版

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 5.1.2

两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

注意:⑴垂线是一条直线。

⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,ab⊥cd。

画已知直线的垂线有无数条。

过一点有且只有一条直线与已知直线垂直。

连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。 在同一平面内两条直线的关系只有两种:相交或平行。

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 5.2.2直线平行的条件

两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。

两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。 两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。

判定两条直线平行的方法:

方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.3平行线的性质

平行线具有性质:

性质1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。 性质2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 性质3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。

判断一件事情的语句叫做命题。 5.4平移

⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各

组对应点的线段平行且相等。

图形的这种移动,叫做平移变换,简称平移。

第六章 《平面直角坐标系》

6.1平面直角坐标系 6.1.1有序数对

有顺序的两个数a与b组成的数对,叫做有序数对。 6.1.2平面直角坐标系

平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为_轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

平面上的任意一点都可以用一个有序数对来表示。

建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了ⅰ、ⅱ、ⅲ、ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。 6.2坐标方法的简单应用 6.2.1用坐标表示地理位置

利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下: ⑴建立坐标系,选择一个适当的参照点为原点,确定_轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。 6.2.2用坐标表示平移

在平面直角坐标系中,将点(_,y)向右(或左)平移a个单位长度,可以得到对应点(_+a,y)(或(_-a,y));将点(_,y)向上(或下)平移b个单位长度,可以得到对应点(_,y+b)(或(_,y-b))。

在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

第七章 《三角形》

7.1与三角形有关的线段 7.1.1三角形的边

由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。

顶点是a、b、c的三角形,记作“△abc”,读作“三角形abc”。 三角形两边的和大于第三边。 7.1.2三角形的高、中线和角平分线 7.1.3三角形的稳定性

三角形具有稳定性。 7.2与三角形有关的角 7.2.1三角形的内角

三角形的内角和等于180。 7.2.2三角形的外角

三角形的一边与另一边的延长线组成的角,叫做三角形的外角。 三角形的一个外角等于与它不相邻的两个内角的和。 三角形的一个外角大于与它不相邻的任何一个内角。 7.3多边形及其内角和 7.3.1多边形

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 n边形的对角线公式:

各个角都相等,各条边都相等的多边形叫做正多边形。

多边形的内角和n边形的内角和公式:180(n-2)

多边形的外角和等于360。

1 三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

☆2判断三条线段能否组成三角形。

①a+b>c(a b为最短的两条线段)②a-b

☆3第三边取值范围: a-b < c<13. 4 对应周长取值范围

若两边分别为a,b则周长的取值范围是 2a<2(a+b) a为较长边。

如两边分别为5和7则周长的取值范围是 14<24.

☆5 三角形的角平分线、高、中线都有三条,都是线段。其中角平分线、中线都交于一点且交点在三角形内部,高所在直线交于一点。

6“三线”特征:☆三角形的中线

①平分底边。

②分得两三角形面积相等并等于原三角形面积的一半。

③分得两三角形的周长差等于邻边差。

☆7 直角三角形:

①两锐角互余。

② 30度所对的直角边是斜边的一半。

③三条高交于三角形的一个顶点。

④ ∠a=1/2∠b=1/3∠c

⑤ ∠a: ∠b: ∠c=1:2:3

⑥ ∠a=∠b+∠c ⑦ ∠a: ∠b: ∠c=1:1:2 ⑧ ∠a=90-∠b

☆8 相关命题:

→1 三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

→2 锐角三角形中的锐角的取值范围是60≤_<90 。锐角不小于60度。 →3 任意一个三角形两角平分线的夹角=90+第三角的一半。

→4 钝角三角形有两条高在外部。

→5 全等图形的大小(面积、周长)、形状都相同。

→6 面积相等的两个三角形不一定是全等图形。 →7 能够完全重合的两个图形是全等图形。

→8 三角形具有稳定性。

9 三条边分别对应相等的两个三角形全等。

10 三个角对应相等的两个三角形不一定全等。

11 两个等边三角形不一定全等。

12 两角及一边对应相等的两个三角形全等。

13 两边及一角对应相等的两个三角形不一定全等。 14 两边及它们的夹角对应相等的两个三角形全等。 15 两条直角边对应相等的两个直角三角形全等。

16 一条斜边和一直角边对应相等的两个三角形全等。

17 一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

18 一角和一边对应相等的两个直角三角形不一定全等。

19 有一个角是60的等腰三角形是等边三角形。

【第11篇 初一下册数学期末试题的分析总结

初一下册数学期末试题的分析总结

一、选择题(每小题2分,共20分)

1.如图,若m∥n,∠1=105°,则∠2=

a. 55° b. 60° c. 65° d. 75°

2. 在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有个.

a. 120 b. 60 c. 12 d. 6

3 设 ,a在两个相邻整数之间,则这两个整数是

a. 1和2 b. 2和3 c. 3和4 d. 4和5

4.已知不等式3_﹣a≤0的正整数解恰是1,2,3,4,那么a的取值范围是

a. a12 b. 12≤a≤15 c. 12a≤15 p= 12≤a

5.(4分)(2005常州)将100个数据分成8个组,如下表:则第六组的频数为

组号 1 2 3 4 5 6 7 8

频数 11 14 12 13 13 _ 12 10

a. 12 b. 13 c. 14 d. 15

6.不等式组 无解,则a的取值范围是

7.在方程组 中,若未知数_,y满足_+y0,则m的取值范围在数轴上的表示应是如图所示的

a. b. c. d.

8.若方程组 的解_与y相等.则a的

a. 4 b. 10 c. 11 d. 12

9.在下列实数 ,3.14159265, ,﹣8, , , 中无理数有

a. 3个 b. 4个 c. 5个 d. 6个

10.要使两点 、 都在平行于 轴的某一直线上,那么必须满足( )

a. b. c. d.

11.为了了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,300个产品的质量叫做

a. 总体 b. 个体 c. 总体的一个样本 d. 普查方式

12.如图所示,若三角形abc中经平移后任意一点p 的对应点为 ,则点a的对应 点 的坐标是( ) a.(4,1) b.(9,-4) c.(-6,7) d.(-1,2)

二.填空题

13. 点a(a2+1,﹣1﹣b2)在第 象限.

14. 一组数据有50个,落在5个小组内,第一、二、三、四组的频数分别为3、8、 21,13,则第五小组的频数为 .

15 将点p(﹣3,y)向下平移3个单位,向左平移2个单位后得到点q(_,﹣1),则_y=

16 已知 和 互为相反数,且_﹣y+4的平方根是它本身,则_= ,y=

17. 的正整数解是_____.

18若y= ,则 =_______.

19.若不等式组 的解集是空集,则a、b的大小关系是_______________.

三、 解答题

20、解方程组: 21、解下列不等式组

22、已知 , 求7(_+y)-20的立方根。

23 计算: + + ﹣ .

24已知: 如图, ∠c = ∠1, ∠2和∠d互余, be⊥fd于g.

求证: ab∥cd .

25.已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ed//fb.

26.(9分)如图,在平面直角坐标系中,四边形abcd各顶点的坐标分别是a(-3,4)、b(2,3)、c(2,0)、d(-4,-2),且ad与 轴交点e的'坐标为 ,求这个四边形的面积。(提示:分别过点a、d向 轴作垂线)

27小明在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.(8分)

分组 频数 百分比

600≤ 800

2 5%

800≤ 1000 6 15%

1000≤ 1200 45%

9 22.5%

1600≤ 1800 2

合计 40 100%

根据以上提供的信息,解答下列问题:

(1)补全频数分布表.(2)补全频数分布直方图.

(3)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?

28. (10分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.

(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?

(2)若该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但 又不超过610元,请你帮助该超市设计相应的进货方案.

【第12篇 初一下册数学知识点总结归纳苏科版

第五章 平等线与相交线

1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等

3、判断两直线平行的条件:

1)同位角相等,两直线平行。(2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。(4)如果两条直线都和第三条直线平行

4、平行线的特征:

(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。(3)同旁内角互补,两直线平行。

5、命题:

⑴命题的概念:

判断一件事情的语句,叫做命题。

⑵命题的组成

每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如

果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

6、平移

平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。

第六章 平面直角坐标系

1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)

2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。 (1)._轴上的点的纵坐标为零;y轴上的点的横坐标为零。

(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

4.点到轴及原点的距离

点到_轴的距离为|y|; 点到y轴的距离为|_|;点到原点的距离为_的平方加y的平方再开根号;

在平面直角坐标系中对称点的特点:

1.关于_成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

各象限内和坐标轴上的点和坐标的规律:

第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)

_轴正方向:(+,0)_轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)

_轴上的点纵坐标为0,y轴横坐标为0。

第七章 三角形

1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。

2、三角形三个内角的和等于180度。

3、直角三角形的两个锐角互余

4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。

5、直角三角形全等的条件:

斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“hl”。

(只要有任意两条边相等,这两个直角三角形就全等)。

6、三角形全等的条件:

(1)三边对应相等的两个三角形全等,简写为“边边边”或“sss”。

(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“asa”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“aas”。

(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“sas”。

27、等腰三角形的特征:

(1) 有两条边相等的三角形叫做等腰三角形;

(2) 等腰三角形是轴对称图形;

(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。

(4)等腰三角形的两个底角相等。

(5)等腰三角形的底角只能是锐角。

9.三角形内角和为180°,三角形的一个外交等于与他不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角。

多边形

1.有一些线段首位顺次相接组成的图形叫做多边形

2、多边形相邻两边组成的角叫做它的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

3、连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

4、画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,否则就是凹多边形。

5.各个角都相等,各条边都相等的多边形叫做正多边形。

6、n边形的内角和等于(n-2)_180°

多边形的外角和等于360°

7、如果说四边形的一对角互补,那么另一组角也互补。

镶嵌

1.镶嵌也叫作密铺,指的是:用一些不重叠摆放的多边形把平面的一部分无缝隙的完全覆盖。

第八章 二元一次方程组

1、二元一次方程组的意义:含有两个未知数的方程并且所含未知项的次数是1,这样的整式方程叫做二元一次方程。

把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。

有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。

2、 二元一次方程组有两种解法,一种是代入消元法,一种是加减消元法.

代入消元法:把二元一次方程中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或向减,就能消去这个未知数,得到一个一元一次方程。

3、三元一次方程组:在3个方程组中,共含有3个未知数,且每个未知数的次数都是1次,像这样的方程组叫做三元一次方程组.

第九章 不等式与不等式组

1、不等式:用不等号将两个解析式连结起来所成的式子。

2、不等式的最基本性质有:①如果_>y,那么y<_;如果y<_,那么_>y;②如果_>y,y>z;那么_>z;③如果_>y,而z为任意实数,那么_+z>y+z;④ 如果_>y,z>0,那么_z>yz;⑤如果_>y,z<0,那么_z<yz。

2、不等式的基本性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性).

性质2:如果a>b,那么a+c>b+c(不等式的可加性).

性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac

性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则)

性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)

性质6:如果a>b>0,n∈n,n>1,那么an>bn,且.当0<1时也成立. (乘方法则)

性质7:如果a>等于b c>b 那么c大于等于a

性质7不一定成立,如a取值28,b取值3,c取值19,则c不大于a

4、不等式组:几个含有相同未知数的不等式联立起来,叫做不等式组.

5、解不等式组,可以先把其中的不等式逐条算出各自的解集,然后分别在数轴上表示出来。

以两条不等式组成的不等式组为例,

①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”

②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”

③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若_表示不等式的解集,此时一般表示为a<_<b,或a≤_≤b。此乃“相交取中”

④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”

第十章 数据的收集、整理与描述

1、全面调查:考察全体对象的调查叫做全面调查,也叫普查。

2、抽样调查:只抽取一部分对象进行调查,然后根据数据推断全体对象的情况。要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。

3、直方图的绘制方法:①集中和记录数据,求出其值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。

②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。

③计算组距的宽度。用组数去除值和最小值之差,求出组距的宽度。

④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去组距的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。

⑤统计各组数据出现频数,作频数分布表。

⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。

【第13篇 苏科版初一下册数学辅导资料总结

导语,弄清答题的要求和方式。例如:选择题是单选项还是双选项。单选题常用的方法有淘汰法和直接法。淘汰法的特点是,根据已学知识经过判断去掉不合题意者,剩下的一个就是正确的答案。直接法的特点是,根据已学知识经过推论或计算得出答案,以此答案对照各备选答案,相同者为正确答案,解题时找到一个正确答案后,剩下部分可以不再考虑。多选题要求严格,解题时对每一个备选答案都要进行认真判断。难度较小的题常用淘汰法,难度较大的题常用分析法和逆推法。淘汰法与单选题所用的淘汰法相同;分析法是经过分析得出结论;逆推法是从答案出发反推,舍去不合题意者,剩下的为答案。涉及到计算的题,则常用直接法,即用计算结果对照备选答案,相同者为正确答案。

第二是要注意弄清评分得分的理由。还以选择题为例,特别是双选项的选择题,要看清是全正确才得分还是仅选一项正确了就得一半分数,有没有倒扣分。遇到不是倒扣分的选择题,自己把握不大时可以大胆地去猜,猜时要选用淘汰法排除一些选项,剩下的选项用逻辑推理或直觉去猜,千万不要不敢选。但是,遇到倒扣分的题要防止没有把握的猜测。

第三是要弄清作答方式是在什么地方写答案。若在机读的答题卡上作答时,要在目纸上选好选项后,再用铅笔在答题卡上将相应的信息点涂黑。涂黑时要注意涂得标准,不要涂了改,改了涂,以免因为涂黑不规范而被计算机误读。

第四要注意把握时间。一般选择题大体上是得1分的用1分钟时间,得2分的用两分钟时间,得3分的用3分钟时间。切忌在个别难题上纠缠太久。一下子把握不准的问题,可先选一个自认合理的答案,并在草纸上记下该题的位置,待全卷答完后,再回过头来仔细推敲。

第五是要注意简答题要想好了再写。简答题要求简单明了,答题时要抓住与问题之间最本质的联系,讲明道理。

第六要注意的是,解大型题尤其是计算题,要能做几步就做几步,宁可“会不全”,也不要“全不会”。对于一眼就看出结论的题,也要写出步骤,要一步不少,一字不落。

第七是要注意检查。在时间允许的情况下,认真检查,改正因为任何粗心导致的错误,千万不要提前交卷。

考生除了注意上述三步复习法以外,在复习时还应注意自我心理调适,注意安排好饮食和睡眠,注意劳逸结合和身体锻炼。另外,正式考试时,每考完一科尽快安排未考科目的复习,不要与别人对答案,以免发现自己的答案错了而导致心烦意乱,影响下一科的复习和考试。

【第14篇 初一下册数学知识点总结归纳(苏科版)

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

【第15篇 初一下册数学知识点总结归纳2023

第五章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是

邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角,

与 互为邻补角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;

= 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,

其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:

①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样

的两个角叫 同位角 。图3中,共有 对同位角: 与 是同位角;

与 是同位角; 与 是同位角; 与 是同位角。

②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。图3中,共有 对内错角: 与 是内错角; 与 是内错角。

③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。图3中,共有 对同旁内角: 与 是同旁内角; 与 是同旁内角。

7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:

性质1:两直线平行,同位角相等。如图4所示,如果a∥b,

则 = ; = ; = ; = 。

性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则 = ; = 。

性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则 + = 180°;

+ = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

8、平行线的判定:

判定1:同位角相等,两直线平行。如图5所示,如果 =

或 = 或 = 或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 = 或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°;

+ = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则 ∥ 。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

第六章 实数

知识点一实数的分类

1、按定义分类: 2.按性质符号分类:

注:0既不是正数也不是负数.

知识点二实数的相关概念

1.相反数

(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.

(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.

(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.

2.绝对值 |a|≥0.

3.倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .

4.平方根

(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.

(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作 .

5.立方根

如果_3=a,那么_叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.

知识点三实数与数轴

数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.

知识点四实数大小的比较

1.对于数轴上的任意两个点,靠右边的点所表示的数较大.

2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.

3.无理数的比较大小:

知识点五实数的运算

1.加法

同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.

2.减法:减去一个数等于加上这个数的相反数.

3.乘法

几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.

4.除法

除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.

5.乘方与开方

(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.

(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.

(3)零指数与负指数

知识点六有效数字和科学记数法

1.有效数字:

一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.

2.科学记数法:

把一个数用 (1≤ <10,n为整数)的形式记数的方法叫科学记数法.

第七章 平面直角坐标系

一、知识网络结构

二、知识要点

1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。

2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3、横轴、纵轴、原点:水平的数轴称为_轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4、坐标:对于平面内任一点p,过p分别向_轴,y轴作垂线,垂足分别在_轴,y轴上,对应的数a,b分别叫点p的横坐标和纵坐标,记作p(a,b)。

5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。

6、各象限点的坐标特点①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。

7、坐标轴上点的坐标特点①_轴正半轴上的点:横坐标 0,纵坐标 0;②_轴负半轴上的点:横坐标 0,纵坐标 0;③y轴正半轴上的点:横坐标 0,纵坐标 0;④y轴负半轴上的点:横坐

标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。(填“>”、“<”或“=”)

8、点p(a,b)到_轴的距离是 |b| ,到y轴的距离是 |a| 。

9、对称点的坐标特点①关于_轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。

10、点p(2,3) 到_轴的距离是 ; 到y轴的距离是 ; 点p(2,3) 关于_轴对称的点坐标为( , );点p(2,3) 关于y轴对称的点坐标为( , )。

11、如果两个点的 横坐标 相同,则过这两点的直线与y轴平行、与_轴垂直 ;如果两点的 纵坐标相同,则过这两点的直线与_轴平行、与y轴垂直 。如果点p(2,3)、q(2,6),这两点横坐标相同,则pq∥y轴,pq⊥_轴;如果点p(-1,2)、q(4,2),这两点纵坐标相同,则pq∥_轴,pq⊥y轴。

12、平行于_轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同;在一、三象限角平分线上的点的横坐标与纵坐标相同;在二、四象限角平分线上的点的横坐标与纵坐标互为相反数。如果点p(a,b) 在一、三象限角平分线上,则p点的横坐标与纵坐标相同,即 a = b ;如果点p(a,b) 在二、四象限角平分线上,则p点的横坐标与纵坐标互为相反数,即 a = -b 。

13、表示一个点(或物体)的位置的方法:一是准确恰当地建立平面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的平面直角坐标系也不同,得到的同一个点的坐标也不同。

14、图形的平移可以转化为点的平移。坐标平移规律:①左右平移时,横坐标进行加减,纵坐标不变;②上下平移时,横坐标不变,纵坐标进行加减;③坐标进行加减时,按“左减右加、上加下减”的规律进行。如将点p(2,3)向左平移2个单位后得到的点的坐标为( , );将点p(2,3)向右平移2个单位后得到的点的坐标为( , );将点p(2,3)向上平移2个单位后得到的点的坐标为( , );将点p(2,3)向下平移2个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向左平移3个单位后再向下平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向上平移5个单位后得到的点的坐标为( , );将点p(2,3)先向右平移3个单位后再向下平移5个单位后得到的点的坐标为( , )。

第八章 二元一次方程组

一、知识网络结构

二、知识要点

1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。

2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为 ( 为常数,并且 )。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。

3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。

4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。

5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。

6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。

第九章 不等式与不等式组

一、知识网络结构

二、知识要点

1、用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。

3、不等式的性质:

①性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为: 如果 ,那么 ; 如果 ,那么 ;

如果 ,那么 ; 如果 ,那么 。

②性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

③性质3:不等式的两边同时乘以(或除以)同一个 负数 ,不等号的方向 改变 。

用字母表示为: 如果 ,那么 (或 );如果 ,那么 (或 );

如果 ,那么 (或 );如果 ,那么 (或 );

4、解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。

5、不等式组中含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式组叫一元一次不等式组。使不等式组中的每个不等式都成立的未知数的值叫不等式组的解,一个不等式组的所有的解组成的集合,叫这个不等式组的解集解(简称不等式组的解)。不等式组的解集可以在数轴上表示出来。求不等式组的解集的过程叫解不等式组。

6、解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。

7、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。

第十章 数据的收集、整理与描述

知识要点

1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。

2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。

3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。

4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量 。

5、画频数直方图的步骤:①计算数差(值与最小值的差);②确定组距和组数;③列频数分布表;④画频数直方图 。

初一下册数学总结(十五篇)

有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。…
推荐度:
点击下载文档文档为doc格式

相关初一下册数学信息

  • 初一下册数学总结(十五篇)
  • 初一下册数学总结(十五篇)30人关注

    有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有4对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫 ...[更多]