- 目录
-
第1篇初中数学三角函数的诱导公式的知识点总结 第2篇初中数学知识点总结-三角函数 第3篇八年级数学三角函数基础知识点总结 第4篇锐角三角函数知识点总结 第5篇高三数学复习三角函数知识点总结 第6篇数学公式总结:三角函数万能公式 第7篇初中数学三角函数知识点总结归纳 第8篇高二数学必修三公式总结:三角函数的积化和差公式 第9篇初中数学三角函数公式总结 第10篇初中数学九年级知识点总结锐角三角函数 第11篇任意角的三角函数知识点总结 第12篇高二数学“三角函数”公式总结 第13篇高中数学三角函数公式定理记忆口诀总结 第14篇三角函数知识点总结 第15篇“学而思杯”初中奥数三角函数知识点总结 第16篇初中数学三角函数知识点总结
【第1篇 初中数学三角函数的诱导公式的知识点总结
初中数学三角函数的诱导公式的知识点总结
诱导公式的本质
所谓三角函数诱导公式,就是将角n(/2)的'三角函数转化为角的三角函数。
常用的诱导公式
公式一: 设为任意角,终边相同的角的同一三角函数的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 设为任意角,的三角函数值与的三角函数值之间的关系:
sin=-sin
cos=-cos
tan=tan
cot=cot
公式三: 任意角与 -的三角函数值之间的关系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到与的三角函数值之间的关系:
sin=sin
cos=-cos
tan=-tan
cot=-cot
【第2篇 初中数学知识点总结-三角函数
初中数学知识点总结-三角函数
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推导公式:
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
其他:
sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
函数名 正弦 余弦 正切 余切 正割 余割
在平面直角坐标系_oy中,从点o引出一条射线op,设旋转角为θ,设op=r,p点的坐标为(_,y)有
正弦函数 sinθ=y/r
余弦函数 cosθ=_/r
正切函数 tanθ=y/_
余切函数 cotθ=_/y
正割函数 secθ=r/_
余割函数 cscθ=r/y
正弦(sin):角α的对边比上斜边
余弦(cos):角α的邻边比上斜边
正切(tan):角α的对边比上邻边
余切(cot):角α的邻边比上对边
正割(sec):角α的斜边比上邻边
余割(csc):角α的斜边比上对边
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
锐角三角函数公式
两角和与差的三角函数:
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函数万能公式
万能公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tana+tanb+tanc=tanatanbtanc
证:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得证
同样可以得证,当_+y+z=nπ(n∈z)时,该关系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下结论
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
万能公式为:
设tan(a/2)=t
sina=2t/(1+t^2) (a≠2kπ+π,k∈z)
tana=2t/(1-t^2) (a≠2kπ+π,k∈z)
cosa=(1-t^2)/(1+t^2) (a≠2kπ+π,且a≠kπ+(π/2) k∈z)
就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的.时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
三角函数关系
倒数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
构造以'上弦、中切、下割;左正、右余、中间1'的正六边形为模型。
倒数关系
对角线上两个函数互为倒数;
商数关系
六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。
平方关系
在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2_α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半角的正弦、余弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
诱导公式
诱导公式的本质
所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用的诱导公式
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【第3篇 八年级数学三角函数基础知识点总结
八年级数学三角函数基础知识点总结
1、比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d
2、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
3、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
4、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
5、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
6、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
7、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
8、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
9、相似三角形判定定理1两角对应相等,两三角形相似(asa)
10、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
11、判定定理2两边对应成比例且夹角相等,两三角形相似(sas)
12、判定定理3三边对应成比例,两三角形相似(sss)
13、定理如果一个直角三角形的.斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
14、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
15、性质定理2相似三角形周长的比等于相似比
16、性质定理3相似三角形面积的比等于相似比的平方
17、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
18、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
【第4篇 锐角三角函数知识点总结
锐角三角函数知识点总结
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
2、如下图,在rt△abc中,∠c为直角,则∠a的锐角三角函数为(∠a可换成∠b):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的`增减性:
当0°≤?≤90°时,sin?随?的增大而增大,cos?随?的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:a2?b2?c2;②角的关系:a+b=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例:
(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
(2)坡面的铅直高度h和水平宽度l的比叫做坡度(坡比)。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,oa、ob、oc、od的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,oa、ob、oc、od的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。
【第5篇 高三数学复习三角函数知识点总结
高三数学复习三角函数知识点总结
考试内容:
角的概念的推广.弧度制.
任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.
两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
正弦函数、余弦函数的图像和性质.周期函数.函数y=asin(_+)的图像.正切函数的图像和性质.已知三角函数值求角.
正弦定理.余弦定理.斜三角形解法.
考试要求:
(1)理解任意角的`概念、弧度的意义能正确地进行弧度与角度的换算.
(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.
(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.
(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用五点法画正弦函数、余弦函数和函数y=asin(_+)的简图,理解a.、的物理意义.
(6)会由已知三角函数值求角,并会用符号arcsin_arc-cos_arctan_表示.
(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.
(8)同角三角函数基本关系式:sin2+cos2=1,sin/cos=tan,tancos=1.
高三数学复习三角函数知识点就为大家介绍到这里,希望对你有所帮助。
【第6篇 数学公式总结:三角函数万能公式
数学公式总结:三角函数万能公式
学好数学的关键在于理解并掌握数学公式,接下来小编就为大家整理了相关的.文章初一数学公式总结:三角函数万能公式,希望能够帮助到大家!
万能公式
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
证明下面两式,只需将一式,左右同除(sin)^2,第二个除(cos)^2即可
(4)对于任意非直角三角形,总有
tana+tanb+tanc=tanatanbtanc
证:
a+b=-c
tan(a+b)=tan(-c)
(tana+tanb)/(1-tanatanb)=(tan-tanc)/(1+tantanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得证
同样可以得证,当_+y+z=nz)时,该关系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下结论
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
三角函数万能公式为什么万能
万能公式为:
设tan(a/2)=t
sina=2t/(1+t^2) (a+,kz)
tana=2t/(1-t^2) (a+,kz)
cosa=(1-t^2)/(1+t^2) (a+,且a+(/2) kz)
就是说sina.tana.cosa都可以用tan(a/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.
这篇初一数学公式总结:三角函数万能公式就和大家分享到这里了。小编提醒大家:单纯的记忆是不能解决实际问题的,我们必须学会灵活运用所学知识。
【第7篇 初中数学三角函数知识点总结归纳
初中数学三角函数知识点总结归纳
三角函数解题思路
很多人都认为成绩是用大量的题堆出来的,其实不然,要想提高成绩,我们还需要对所学的知识点进行总结。我们要对它格外重视。解题思想方法有转化思想、数形结合思想、函数思想、方程思想法。全文
锐角三角函数定义
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
互余角的`三角函数间的关系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
【第8篇 高二数学必修三公式总结:三角函数的积化和差公式
三角函数的积化和差公式
sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]
cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]
cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]
sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]
【第9篇 初中数学三角函数公式总结
初中数学三角函数公式总结
三角形中的恒等式是我们经常在考试中遇到的题型,具体的公式内容如下:
三角形与三角函数
1、正弦定理:在三角形中,各边和它所对的`角的正弦的比相等,即a/sina=b/sinb=c/sinc=2r 。(其中r为外接圆的半径)
2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosb + b cosc
3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2—2bc·cosa
4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a—b)/(a+b)=tan[(a—b)/2]/tan[(a+b)/2]=tan[(a—b)/2]/cot(c/2)
5、三角形中的恒等式:
对于任意非直角三角形中,如三角形abc,总有tana+tanb+tanc=tanatanbtanc
证明:
已知(a+b)=(π—c)
所以tan(a+b)=tan(π—c)
则(tana+tanb)/(1—tanatanb)=(tanπ—tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
【第10篇 初中数学九年级知识点总结锐角三角函数
初中数学九年级知识点总结锐角三角函数
一、目标与要求
通过本章知识点的归纳总结,同学们应该熟练掌握以下内容:
1.通过实例认识直角三角形的边角关系,即锐角三角函数(sina,cosa,tana),记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角。
2.会使用计算器由已知锐角求它的三角函数值,由已知三角函数值会求它的对应的锐角。
3.运用三角函数解决与直角三角形有关的简单的.实际问题。
4.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题;初步感受高等数学中的微积分思想。
5.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力。
6.能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题。
二、重点与难点
1.重点
(1)锐角三角函数的概念和直角三角形的解法,特殊角的三角函数值也很重要,应该牢牢记住。
(2)能够运用三角函数解直角三角形,并解决与直角三角形有关的实际问题。
2.难点
(1)锐角三角函数的概念。
(2)经历探索30°,45°,60°角的三角函数值的过程,锻炼学生观察、分析,解决问题的能力。
三、知识框架
人教版九年级物理电与磁、信息的传递知识点归纳表
【第11篇 任意角的三角函数知识点总结
任意角的三角函数知识点总结
三角函数定义
把角度θ作为自变量,在直角坐标系里画个半径为1的圆(单位圆),然后角的一边与_轴重合,顶点放在圆心,另一边作为一个射线,肯定与单位圆相交于一点。这点的坐标为(_,y)。
sin(θ)=y;
cos(θ)=_;
tan(θ)=y/_;
三角函数公式大全
两角和公式
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
倍角公式
tan2a = 2tana/(1-tan2 a)
sin2a=2sina?cosa
cos2a = cos^2 a--sin2 a
=2cos2 a—1
=1—2sin^2 a
三倍角公式
sin3a = 3sina-4(sina)3;
cos3a = 4(cosa)3 -3cosa
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(a/2) = √{(1--cosa)/2}
cos(a/2) = √{(1+cosa)/2}
tan(a/2) = √{(1--cosa)/(1+cosa)}
cot(a/2) = √{(1+cosa)/(1-cosa)} ?
tan(a/2) = (1--cosa)/sina=sina/(1+cosa)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tana+tanb=sin(a+b)/cosacosb
积化和差
sin(a)sin(b) = -1/2_[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2_[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2_[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2_[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tga=tana = sina/cosa
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
其它公式
a?sin(a)+b?cos(a) = [√(a2+b2)]_sin(a+c) [其中,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a2+b2)]_cos(a-c) [其中,tan(c)=a/b]
1+sin(a) = [sin(a/2)+cos(a/2)]2;
1-sin(a) = [sin(a/2)-cos(a/2)]2;
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的`三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈z)
物理常用公式
a?sin(ωt+θ)+ b?sin(ωt+φ) =
√{(a2 +b2 +2abcos(θ-φ)} ? sin{ ωt + arcsin[ (a?sinθ+b?sinφ) / √{a2 +b2; +2abcos(θ-φ)} }
√表示根号,包括{……}中的内容
【第12篇 高二数学“三角函数”公式总结
高二数学“三角函数”公式总结
今天,小编就给大家整理了高二数学“三角函数”公式。
1、万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
2、其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tana+tanb+tanc=tanatanbtanc
证:
a+b=π-c
tan(a+b)=tan(π-c)
(tana+tanb)/(1-tanatanb)=(tanπ-tanc)/(1+tanπtanc)
整理可得
tana+tanb+tanc=tanatanbtanc
得证
同样可以得证,当_+y+z=nπ(n∈z)时,该关系式也成立
由tana+tanb+tanc=tanatanbtanc可得出以下结论
(5)cotacotb+cotacotc+cotbcotc=1
(6)cot(a/2)+cot(b/2)+cot(c/2)=cot(a/2)cot(b/2)cot(c/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2=1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc
(9)sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
【第13篇 高中数学三角函数公式定理记忆口诀总结
高中数学三角函数公式定理记忆口诀总结
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的`证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
【第14篇 三角函数知识点总结
三角函数知识点总结
常见考法
(1)利用同角三角函数的三个重要关系化简求值;(2)利用特殊角的三角函数解决实际生活中有关距离的问题。
误区提醒
(1)运用三角函数概念及其关系式时,计算易错,名称易混淆;(2)没有明确三角形是直角三角形或认定中rt△abc中的∠c=90的,从而错误地求出锐角的三角函数值;
(3)特殊角的三角函数值易混淆,也容易把一个角与其余角的'三角函数值混淆。
典型例题(2010年三亚市月考)在rt△abc中,∠c=90°,a、b、c分别为∠a、∠b、∠c的对边,下列各式成立的是( )
a.b=a·sinb b.a=b·cosb c.a=b·tanb d.b=a·tanb
解析由锐角三角函数的定义,知∠b的对边与邻边的比值是∠b的正切,即tanb=b/a ;b=a·tanb。
【第15篇 “学而思杯”初中奥数三角函数知识点总结
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。
2、如下图,在rt△abc中,∠c为直角,则∠a的锐角三角函数为(∠a可换成∠b):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的增减性:
当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
【第16篇 初中数学三角函数知识点总结
初中数学三角函数知识点总结
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的'锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
锐角三角函数公式
两角和与差的三角函数:
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]si