- 目录
-
第1篇高三数学易错的知识点概要总结 第2篇2023年高考数学易错易混考点总结 第3篇高考数学易错知识点总结笔记 第4篇一年级下册数学易错题知识点总结 第5篇高考数学易错知识点总结 第6篇数学高考状元总结:高考数学易错知识点 第7篇高三数学易错知识点总结 第8篇高考备考高考数学易错点总结 第9篇中考数学易错点总结 第10篇小学数学易错知识点总结 第11篇高考状元总结的高考数学易错知识点 第12篇高中数学易错点总结 第13篇中考数学易错题总结 第14篇高三数学易错点总结 第15篇小学二年级数学易错题整理知识点总结
【第1篇 高三数学易错的知识点概要总结
高三数学易错的知识点概要总结
1.知识网络图
2.复数中的难点
(1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
(2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
(3)复数的辐角主值的求法。
(4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的.不同点。
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。
(4)复数集中一元二次方程和二项方程的解法。
【第2篇 2023年高考数学易错易混考点总结
导数篇:导数(derivative)是微积分中的重要基础概念。当函数y=f(_)的自变量_在一点_0上产生一个增量δ_时,函数输出值的增量δy与自变量增量δ_的比值在δ_趋于0时的极限a如果存在,a即为在_0处的导数,记作f'(_0)或df(_0)/d_。
组合数学篇:排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
立体几何篇:数学上,立体几何是3维欧氏空间的几何的传统名称—- 因为实际上这大致上就是我们生活的空间。一般作为平面几何的后续课程。立体测绘处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。尤得塞斯建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。
平面向量篇:平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
解析几何篇:又称为坐标几何或卡氏几何,早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星型线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。点击阅读解析几何易错易混考点
三角函数篇:三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
不等式篇:一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
数列篇:数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。
集合篇:集合是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的集合论——朴素集合论中的定义,集合就是“一堆东西”。集合里的“东西”,叫作元素。
【第3篇 高考数学易错知识点总结笔记
高考数学易错知识点总结笔记
一、集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易a忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
二、不等式
1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.
2.绝对值不等式的解法及其几何意义是什么?
3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.
5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。
6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a
三、数列
1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?
2.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
3.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?
4.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)
5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
四、三角函数
1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?
3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
4. 你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。 异角化同角,异名化同名,高次化低次)
5. 反正弦、反余弦、反正切函数的取值范围分别是
6.你还记得某些特殊角的三角函数值吗?
7.掌握正弦函数、余弦函数及正切函数的图象和性质。你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?
五、平面向量
1..数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。
2..数量积与两个实数乘积的区别:
在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。
已知实数,且,则a=c,但在向量的数量积中没有。
在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。
3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
六、解析几何
1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?
2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。
3.直线的倾斜角、到的角、与的夹角的取值范围依次是。
4. 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?
5. 对不重合的两条直线
(建议在解题时,讨论后利用斜率和截距)
6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的'截距都是0,亦为截距相等。
7.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)
8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
9.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?
10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
11. 通径是抛物线的所有焦点弦中最短的弦。(想一想在双曲线中的结论?)
12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).
13.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
七、立体几何
1.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。
2.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?
3.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见
4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。
5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。
6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
7.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
8. 两条异面直线所成的角的范围:0°<α≤90°< p='" />
直线与平面所成的角的范围:0o≤α≤90°
【第4篇 一年级下册数学易错题知识点总结
一年级下册数学易错题知识点总结
(1)10个一是;10个十是。
(2)6个一和8个十是;39里有个十和个一。
(3)读数和写数都从起。
(4)1小时=分。
(5)一个一个地数,把79前面的一个数和后面的两个数写出来。
、79、、
(6)一十一十地数,把80前面的两个数和后面的两个数写出来。
、、80、、
(7)在下面的里填数,组成得数是14的算式。
+=+=
-=-=
(8)一个两位数,个位上的数是6,十位上的数比个位上的数多2,这个数是。
(9)用一张50元,可以换成张10元;也可以换成张5元;
还可以换成张20元和张10元。
(10)用一张100元,可以换成张50元;也可以换成张20元;
还可以换成张10元。
11、6个十和3个一组成,4个一和8个十组成。
12、个一是十,十里面有个一。个十是一百,一百里面有个十,100里面有个一。
13、45是个一和个十组成的。80是由个十组成的。
14、写出78前面的5个数
写出49后面的5个数
52前面的第三个数是,87后面第四个数是
15、最大的一位数,最小的两位数最大的两位数最小的三位数
16、最大的一位数比最小的两位数少,最小的三位数比最大的两位数多
最小的两位数与最大的两位数相差
17、用4和8可以组成的两位数是或
18、用2、5、9可以组成哪些两位数,其中最大的数是,最小的两位数是,请从大到小排列
19、一个两位数,个位上是8,十位上是7,这个数是,它最接近的整十数是。
20、写出4个个位上是8的两位数:
写出4个十位上是3的两位数:
写出个位和十位上的数字相同的数:
21、与69的相邻的数是,与30相邻的数
22、十个10是,减去个十是70
23、看钟面填数。
24、找规律填空。
①画一画:□○△□○△□○△□○△□
②填一填:35、30、25、、、。
21、24、27、、、。
25、最大的两位数是,最小的两位数是,最大的两位数比最小的`两位数多。
26、58里面有个十和个一
27、74中的7在位上,表示7个,4在位上,表示4个。
28、一个数的十位上是6,个位上是2,这个数是
29、写出下面各数
三十五八十一百三十二十七35406829
?
30、70的前面一个数是,后面一个数是
31、5角=分36分=角分?8元5角=角?
1元=角2角+8角=元1元-7角=角
4元+8角=元角?5角4分-8分=角分?
32、35比10多20比63少?34比多8比24多7
比57少9的数是比64多7的数是?比30少8
33、把下面各数按要求填在里。
49387557846310036?
<<<<<<<?
解决问题。
1、一本书有86页,小明看了30页,小红比小明多看了8页。
(1)小红看了多少页?
(2)小明还剩下多少页没有看?
2、一本科技书有78页,小明看了一部分后还剩20页,已看了多少页?
?
3、课外活动做游戏的有43个同学,踢足球的比做游戏的少10人同学,踢足球的有多少个同学?
4、动场上跑步的有45人,跳高的比跑步的多20人,跳高的有多少人??
5、骆驼能活25年,大象能活80年,大象比骆驼多活几年??
6、校园里有32棵柏树,48棵柳树,25棵松树。
(1)柏树和柳树共有几棵?(2)松树比柳树少几棵?(3)柏树比松树多几棵?
?
(4)松树和柏树共有几棵?5)三种树一共有几棵??
7、爷爷58岁,小华6岁,爷爷比小华大多少岁?
8、二年级有男同学38人,女同学41人,(提出问题并解答)
9、小兰今年9岁,妈妈今年36岁,妈妈和小兰相差多少岁?
10、木工组修理一批桌子,已经修好了38张,还有7张没修,这批桌子有多少张?
11、小明上午写了6个生字,下午写了5个,小明这一天共写了多少个生字?
12、小红看一本书,第一天看了9页,还剩下7页没看,这本书一共有多少页?
(1)他们俩一共跳了多少个?(2)小兰比小明少跳多少个?
1、树上一共有23只,飞走了9只,树上还有多少只?
(1)带40元钱买一个书包,应找回多少元?
(2)油画棒比文具盒贵多少元?
(3)你还能提出什么问题?
5、商店卖出了48个西瓜,还剩20个西瓜,商店原来有多少个西瓜?
6、儿童乐园有红色和蓝色的碰碰车35辆,其中蓝色的有6辆,红色的有多少辆?
7、小亮看一本书,已经看了64页,还有8页没看完,这本书共有多少页?
8、一年二班有13个男同学,16个女同学,一年二班一共有多少个同学?
9、数学小组有18个男同学,9个女同学,男同学比女同学多几名?
10、商店卖出了48个西瓜,还剩20个西瓜,商店原来有多少个西瓜?
11、我付65元买一个书包,找回3元。一个书包多少元?
12、花送给幼儿园45朵,还剩20朵。一共做了多少朵?
以上就是为大家提供的一年级下册数学易错题知识点总结大家仔细阅读了吗?加油哦!
【第5篇 高考数学易错知识点总结
高考数学易错知识点总结:集合与简单逻辑
易错点1遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b,就有b=a,φ≠b,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3四种命题的结构不明致误
错因分析:如果原命题是“若a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
易错点4充分必要条件颠倒致误
错因分析:对于两个条件a,b,如果a=>b成立,则a是b的充分条件,b是a的必要条件;如果b=>a成立,则a是b的必要条件,b是a的充分条件;如果a<=>b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
易错点5逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
p∨q真<=>p真或q真,
p∨q假<=>p假且q假(概括为一真即真);
p∧q真<=>p真且q真,
p∧q假<=>p假或q假(概括为一假即假);
┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
高考数学易错知识点总结:函数与导数
易错点1求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点2带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:
一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点3求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点4抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
易错点5函数零点定理使用不当致误
错因分析:如果函数y=f(_)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(_)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
易错点6混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
易错点7混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
易错点8导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
高考数学易错知识点总结:数列
易错点1用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
易错点2an,sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和sn之间存在关系:
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
易错点3对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。
一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n_)是等差数列。
解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
易错点4数列中的最值错误
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。
但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
易错点5错位相减求和时项数处理不当致误
错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。
【第6篇 数学高考状元总结:高考数学易错知识点
数学高考状元总结:高考数学易错知识点大全
集合与简易逻辑
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b高三经典纠错笔记:数学a,就有b=a,φ≠b高三经典纠错笔记:数学a,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件a,b,如果a=>b成立,则a是b的充分条件,b是a的必要条件;如果b=>a成立,则a是b的必要条件,b是a的充分条件;如果a<=>b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
函数与导数 易错点6 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点7 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点8 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点9 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
易错点10 函数零点定理使用不当致误
错因分析:如果函数y=f(_)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(_)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
易错点 11 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的.过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
易错点12 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
易错点13 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
数列 易错点14 用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
易错点15 an,sn关系不清致误 错因分析:在数列问题中,数列的通项an与其前n项和sn之间存在关系:
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
易错点16 对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n_)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
易错点17 数列中的最值错误
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
易错点18 错位相减求和时项数处理不当致误
错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。
【第7篇 高三数学易错知识点总结
更多各科知识点请关注
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.
2.在应用条件时,易a忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道否命题与命题的否定形式的区别.
6.求解与函数有关的问题易忽略定义域优先的.原则.
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法
11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示.
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围,高中政治。
17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
【第8篇 高考备考高考数学易错点总结
高考备考 高考数学易错点总结
集合与简单逻辑
1易错点 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b,就有b=a,φ≠b,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2易错点 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
3易错点 四种命题的结构不明致误
错因分析:如果原命题是“若 a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
4易错点 充分必要条件颠倒致误
错因分析:对于两个条件a,b,如果a=b成立,则a是b的充分条件,b是a的必要条件;如果b=a成立,则a是b的必要条件,b是a的充分条件;如果ab,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5易错点 逻辑联结词理解不准致误
错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:
p∨q真p真或q真,
p∨q假p假且q假(概括为一真即真);
p∧q真p真且q真,
p∧q假p假或q假(概括为一假即假);
┐p真p假,┐p假p真(概括为一真一假)。
函数与导数
6易错点 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:
(1)分母不为0;
(2)偶次被开放式非负;
(3)真数大于0;
(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
7易错点 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:
一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;
二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
8易错点 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
9易错点 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。
解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。
抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
10易错点 函数零点定理使用不当致误
错因分析:如果函数y=f(_)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(_)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
11易错点 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的'切线问题时,首先要区分是什么类型的切线。
12易错点 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。
研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
13易错点 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。
出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
数列14易错点 用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
15易错点 an,sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和sn之间存在关系:
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。
当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
16易错点 对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。
一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n_)是等差数列。
解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
17易错点 数列中的最值错误
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。
但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
18易错点 错位相减求和时项数处理不当致误
错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。
【第9篇 中考数学易错点总结
中考数学易错点总结
1数与式(9个)
易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。
2方程(组)与不等式(组)(8个)
易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。
3函数(8个)
易错点1:各个待定系数表示的的意义。
三角形(11个)
易错点1:三角形的概念以及三角形的角平分线,中线,高线的特征与区别。
5四边形(7个)
易错点1:平行四边形的性质和判定,如何灵活、恰当地应用。三角形的稳定性与四边形不稳定性。
不变与旋转一些性质。
梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。
7对称图形(3个)
易错点1:轴对称、轴对称图形,及中心对称、中心对称图形概念和性质把握不准。
易错点2:图形的轴对称或旋转问题,要充分运用其性质解题,即运用图形的“不变性”,在轴对称和旋转中角的大小不变,线段的长短不变。
易错点3:将轴对称与全等混淆,关于直线对称与关于轴对称混淆。
8统计与概率(8个)
易错点1:中位数、众数、平均数的'有关概念理解不透彻,错求中位数、众数、平均数。
易错点2:在从统计图获取信息时,一定要先判断统计图的准确性。不规则的统计图往往使人产生错觉,得到不准确的信息。
易错点3:对普查与抽样调查的概念及它们的适用范围不清楚,造成错误。
易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差。
易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率。
易错点6:平均数、加权平均数、方差公式,扇形统计图的圆心角与频率之间的关系,频数、频率、总数之间的关系。加权平均数的权可以是数据、比分、百分数还可以是概率(或频率)
易错点7:求概率的方法:(1)简单事件(2)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值。(3)复杂事件求概率的方法运用频率估算概率。
易错点8:判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
【第10篇 小学数学易错知识点总结
小学数学易错知识点总结
数学是研究数量、结构、变化、空间以及信息等概念的一门学科,以下是小编收集的易错知识点总结,欢迎查看!
1、列式计算时,一定要注意除和除以的区别:a除以b或a被b除列式为:a÷b,a除b,或用a去除b,列式为:b÷a
2、边长为100厘米的正方形(半径为50厘米的圆),它们的面积与周长并不相等,因为单位不同,无法比较!应该表述为:“周长与面积的数值相等”。
3、半圆的周长和圆的周长的一半有区别(注意半圆的周长比圆周长的一半多直径的长度)。
4、压路机滚动一周前进多少米?是求它的周长。压路机滚动一周压路的面积,就是求滚筒的侧面积。
5、无盖的水桶,水池,金鱼缸,水槽等求表面积时一定要减少一个底面积。
6、大数比小数大几分之几的方法:(大数—小数)÷单位“1”的量。
7、两根同样长的绳子,一根剪去1/2米,另一根剪去1/2,剩下的长度无法比较;两根同样都是1米长的绳子,一根剪去1/2米,另一根剪去1/2,剩下的同样长。
8、 0.52÷0.17商是3,余数不是1而是0.01
9、求××率的列式中,最后要“×100﹪”.
10、在求总人数、总只数、总棵树……的应用题时,结果不可能是分数和小数
11、改写一个准确数,不要求“四舍五入”取近似值时,一定要把“万”或“亿”后面的数写到小数部分;只有大约或省略 “万”或“亿”位后面的尾数时,才用“四舍五入”求近似值,末尾一定要写“万”或“亿”
12、大数的读法:读几个0的问题
相关例题10,0070,0008读几个0?
正确答案2个(中国的读书方法,四位1级,每一级末尾的“0”不读。西方三位1级,1万读作10千)
例题评析大数的读法是四年级学的一个知识点,尤其是读几个零的问题,容易犯错。
13、近似值问题
相关例题一个数的近似数是1万,这个数最大是_________
错误答案9999
正确答案14999
例题评析四舍五入得出的近似值,不仅可能是“五入”得来的,还有可能是“四舍”得来的。
14、数大小排序问题:注意题目要求的大小顺序(有同学总是忽略从大到小还是从小到大)
相关例题把3.14,π,22/7按照从大往小的顺序排列____________
错误答案3.14<π<22/7
正确答案22/7>π>3.14
例题评析题目怎么要求就怎么来,并且一定要写原数排序。
15、比例尺问题:注意面积的比例尺
相关例题在比例尺为1:2000的沙盘上,实际面积为800000平方米的生态公园为_____平方米
错误答案400
正确答案0.2
例题评析很多同学直接用800000÷2000,得出了错误答案。切记,比例尺=图上距离:实际距离,是长度的比例尺,即图上1长度单位是实际中的
2000长度单位。
注意:比例尺=图上距离:实际距离,不是图上面积:实际面积
16、正反比例问题:未搞清正比例、反比例的含义
相关例题判断对错:圆的面积与半径成正比例
错误答案√
正确答案×
例题评析若两个量乘积是定值,则成反比;若两个量的商是定值,则成正比。严格卡定义,原题改为“圆的面积与半径的平方成正比”,才是正确的。
17、比的问题:注意前后项的顺序
相关例题一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比为_________
错误答案16:9
正确答案9:16
例题评析谁是比的前项,谁是比的后项,一定要睁大眼睛看清楚!写比要注意三个方面。(1)谁与谁的比;(2)谁与谁什么的比;(3)结果一定要化简
千万不要把比的前项后项写反了!
18、比的问题:比与比值的区别
相关例题一个正方形边长增加它的1/3后,则原正方形与新正方形面积的比值为_______
错误答案9:16
正确答案9/16
例题评析比值是一个结果,是一个数。化简比的结果还是一个比
19、单位问题:不要漏写单位
相关例题边长为4厘米的正方形,面积为________
错误答案16
正确答案16平方厘米
例题评析面积问题,结果算对了,但没有写该写的.单位,犹如沙漠中的旅行者,渴死在近在咫尺的河边。可惜!可悲!可笑!可叹!
20、单位问题:注意单位的一致
相关例题某种面粉袋上标有(25kg加减50g)的标记,这种面粉最重是________kg.
错误答案75
正确答案25.05
例题评析很多同学没有看到kg与g的单位不一致,直接给出了75的错误答案。
21、闰年,平年问题:不清楚闰年的概念
相关例题1900年是闰年还是平年?
错误答案闰年
正确答案平年
例题评析四年一闰,百年不闰,四百年再闰。如果一个年份是4的倍数,则为闰年;否则是平年。但是如果是整百的年份(如1900年,2000年),则必须为400的倍数才是闰年,否则为平年。
22、解方程问题:括号前面是减号,去括号要变号!移项要变号!
相关例题6—2(2_—3)=4
错误答案其他
正确答案_=2
例题评析去括号,若括号前面是减号,要变号!移项(某个数在等号的两边左右移动)要变号,再说一遍,要变号!切记!
23、计算问题:牢记运算顺序
相关例题20÷7×1/7
错误答案20
正确答案20/49
例题评析530考试,计算题“去技巧化”趋势明显。重在对基本的分数四则运算、运算顺序以及提取公因数等计算基本功的考察。
24、平均速度问题
相关例题小明上山速度为1米/秒,下山速度为3米/秒,则小明上下山的平均速度为____
错误答案(1+3)÷2=2(米/秒)
正确答案设上山全程为3米,则平均速度为:(3×2)÷(3÷1+3÷3)=1.5(米/秒)
例题评析特别需要注意:平均速度的定义为:总路程÷总时间,不是(速度+速度)÷2
25、题目有多种情况
相关例题等腰三角形一个角的度数是50度,则它的顶角是_______
错误答案80度
正确答案50度或80度
例题评析很多类型的题目,结果往往不止一个。同学们一定要注意思考的缜密性,平时做题时多总结,尽量把所有情况都想全。不要做出一个答案后,就以为大功告成。
26、注意表述的完整性
相关例题一个三角形的三个内角之比为1:1:2,这是一个_______三角形。
错误答案等腰三角形
正确答案等腰直角三角形
例题评析这种题目,只有平时训练时多思考,多总结,考试时才能保证不犯错误。
【第11篇 高考状元总结的高考数学易错知识点
高考状元总结的高考数学易错知识点大全
易错点1 遗忘空集致误
错因分析:由于空集是任何非空集合的真子集,因此,对于集合b高三经典纠错笔记:数学a,就有b=a,φ≠b高三经典纠错笔记:数学a,b≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了 b≠φ这种情况,导致解题结果错误。尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
易错点2 忽视集合元素的三性致误
错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。在解题时也可以先确定字母参数的范围后,再具体解决问题。
易错点3 四种命题的结构不明致误
错因分析:如果原命题是“若 a则b”,则这个命题的逆命题是“若b则a”,否命题是“若┐a则┐b”,逆否命题是“若┐b则┐a”。这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a ,b都是奇数”。
易错点4 充分必要条件颠倒致误
错因分析:对于两个条件a,b,如果a=>b成立,则a是b的充分条件,b是a的必要条件;如果b=>a成立,则a是b的必要条件,b是a的充分条件;如果a<=>b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
函数与导数
易错点6 求函数定义域忽视细节致误
错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。对于复合函数,要注意外层函数的`定义域是由内层函数的值域决定的。
易错点7 带有绝对值的函数单调性判断错误
错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点8 求函数奇偶性的常见错误
错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
易错点9 抽象函数中推理不严密致误
错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
易错点10 函数零点定理使用不当致误
错因分析:如果函数y=f(_)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,那么,函数y=f(_)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也是方程f(c)=0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。
易错点
11 混淆两类切线致误
错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条;曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
易错点12 混淆导数与单调性的关系致误
错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零。
易错点13 导数与极值关系不清致误
错因分析:在使用导数求函数极值时,很容易出现的错误就是求出使导函数等于0的点,而没有对这些点左右两侧导函数的符号进行判断,误以为使导函数等于0的点就是函数的极值点。出现这些错误的原因是对导数与极值关系不清。可导函数在一个点处的导函数值为零只是这个函数在此点处取到极值的必要条件,在此提醒广大考生在使用导数求函数极值时一定要注意对极值点进行检验。
数列
易错点14 用错基本公式致误
错因分析:等差数列的首项为a1、公差为d,则其通项公式an=a1+(n-1)d,前n项和公式sn=na1+n(n-1)d/2=(a1+an)d/2;等比数列的首项为a1、公比为q,则其通项公式an=a1pn-1,当公比q≠1时,前n项和公式sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),当公比q=1时,前n项和公式sn=na1。在数列的基础性试题中,等差数列、等比数列的这几个公式是解题的根本,用错了公式,解题就失去了方向。
易错点15 an,sn关系不清致误
错因分析:在数列问题中,数列的通项an与其前n项和sn之间存在关系:
这个关系是对任意数列都成立的,但要注意的是这个关系式是分段的,在n=1和n≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点。当题目中给出了数列{an}的an与sn之间的关系时,这两者之间可以进行相互转换,知道了an的具体表达式可以通过数列求和的方法求出sn,知道了sn可以求出an,解题时要注意体会这种转换的相互性。
易错点16 对等差、等比数列的性质理解错误
错因分析:等差数列的前n项和在公差不为0时是关于n的常数项为0的二次函数。一般地,有结论“若数列{an}的前n项和sn=an2+bn+c(a,b,c∈r),则数列{an}为等差数列的充要条件是c=0”;在等差数列中,sm,s2m-sm,s3m-s2m(m∈n_)是等差数列。解决这类题目的一个基本出发点就是考虑问题要全面,把各种可能性都考虑进去,认为正确的命题给以证明,认为不正确的命题举出反例予以驳斥。在等比数列中公比等于-1时是一个很特殊的情况,在解决有关问题时要注意这个特殊情况。
易错点17 数列中的最值错误
错因分析:数列的通项公式、前n项和公式都是关于正整数的函数,要善于从函数的观点认识和理解数列问题。但是考生很容易忽视n为正整数的特点,或即使考虑了n为正整数,但对于n取何值时,能够取到最值求解出错。在关于正整数n的二次函数中其取最值的点要根据正整数距离二次函数的对称轴远近而定。
易错点18 错位相减求和时项数处理不当致误
错因分析:错位相减求和法的适用环境是:数列是由一个等差数列和一个等比数列对应项的乘积所组成的,求其前n项和。基本方法是设这个和式为sn,在这个和式两端同时乘以等比数列的公比得到另一个和式,这两个和式错一位相减,得到的和式要分三个部分:
(1)原来数列的第一项;
(2)一个等比数列的前(n-1)项的和;
(3)原来数列的第n项乘以公比后在作差时出现的。在用错位相减法求数列的和时一定要注意处理好这三个部分,否则就会出错。
【第12篇 高中数学易错点总结
高中数学易错点总结
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .
8.充要条件
二、函 数
1.指数式、对数式
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化.(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
(3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 .
(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是r上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数 列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意:
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) 两等差数列对应项和(差)组成的新数列仍成等差数列.
(3) 仍成等差数列.(4“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(5)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的`积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(6)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(7)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2) 成等比数列; 成等比数列 成等比数列.
(3)两等比数列对应项积(商)组成的新数列仍成等比数列.
(4) 成等比数列.
(5)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(6)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(7)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(8)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
【第13篇 中考数学易错题总结
要紧扣课标“吃透”课本。
“现在第一轮复习已结束,接下来的复习可能都是以自己做题为主,不知还有没有必要让孩子再去看看课本。”听讲座的家长黄女士,提的问题,无疑是众多考生家长都想问的疑问。
“中考数学命题时,难度一般是6:3:1。”施老师说,所谓“6”,就是卷中60%的基础题、送分题,这些题目大部分同学都会做;“3”,则是30%的中档题;“1”,是10%较难的题。
对一般同学来说,要保证先拿到60%的基础分,之后把目标对准30%的中档题。至于10%的较难题,则由学生自由发挥了。
而想要拿到60%的基础分,在复习中就务必应该紧扣课标,“吃透”课本,掌握考试要求。“历年考题中,我们发现,不少题目来自于课本,有的是从课本上寻找素材,有的则是在课本习题的`基础上稍作拓展,还有的甚至跟课本中的题目一模一样。”施老师说。
就拿考卷中的第15题,就原封原样的,来自于八年级下学期的课本。而同样是2010年考卷中的第14题,则只是对九年级下学期课本中的某道习题的数据,做了改变而已。
施老师建议大家,在复习过程中,要在“吃透”课本,掌握基础知识同时,重视课本中的例题、课后小结等。在把课本中的基础知识点真正吃透的前提下,再在最后阶段提高解题能力,中考时自然能出好成绩。
要学会探索归纳和寻找规律。
【第14篇 高三数学易错点总结
1、遗忘空集致误
由于空集是任何非空集合的真子集,因此b=?时也满足b?a。解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4、充分条件、必要条件颠倒致误
对于两个条件a,b,如果a?b成立,则a是b的充分条件,b是a的必要条件;如果b?a成立,则a是b的必要条件,b是a的充分条件;如果a?b,则a,b互为充分必要条件。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充分条件和必要条件的概念作出准确的判断。
5、“或”“且”“非”理解不准致误
命题p∨q真?p真或q真,命题p∨q假?p假且q假(概括为一真即真);命题p∧q真?p真且q真,命题p∧q假?p假或q假(概括为一假即假);綈p真?p假,綈p假?p真(概括为一真一假)。求参数取值范围的题目,也可以把“或”“且”“非”与集合的“并”“交”“补”对应起来进行理解,通过集合的运算求解。
6、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
7、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
8、函数零点定理使用不当致误
如果函数y=f(_)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(_)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(_)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
9、三角函数的单调性判断致误
对于函数y=asin(ω_+φ)的单调性,当ω>0时,由于内层函数u=ω_+φ是单调递增的,所以该函数的单调性和y=sin_的单调性相同,故可完全按照函数y=sin_的单调区间解决;但当ω<0时,内层函数u=ω_+φ是单调递减的,此时该函数的单调性和函数y=sin_的单调性相反,就不能再按照函数y=sin_的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
10、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
高三数学易错点
【第15篇 小学二年级数学易错题整理知识点总结
小学二年级数学易错题整理知识点总结
(1)10个一是(10个十是( )。
(2)6个一和8个十是(39里有( )个十和( )个一。
(3)读数和写数都从( )起。
(4)1小时=( )分。
(5)一个一个地数,把79前面的一个数和后面的两个数写出来。
( )、79、( )、( )
(6)一十一十地数,把80前面的两个数和后面的两个数写出来。
( )、( )、80、( )、( )
(7)在下面的( )里填数,组成得数是14的算式。
( )+( )=( ) ( )+( )=( )
( )-( )=( ) ( )-( )=( )
(8)一个两位数,个位上的数是6,十位上的数比个位上的数多2,这个数是( )。
(9)用一张50元,可以换成( )张10元;也可以换成( )张5元;
还可以换成( )张20元和( )张10元。
(10)用一张100元,可以换成( )张50元;也可以换成( )张20元;
还可以换成( )张10元。
11、6个十和3个一组成( ),4个一和8个十组成( )。
12、( )个一是十,十里面有( )个一。( )个十是一百,一百里面有( )个十,100里面有( )个一。
13、45是( )个一和( )个十组成的。80是由( )个十组成的。
14、写出78前面的5个数( )
写出49后面的5个数( )
52前面的第三个数是( ),87后面第四个数是( )
15、最大的一位数( ),最小的两位数( )最大的两位数( )最小的三位数( )
16、最大的一位数比最小的两位数少( ),最小的三位数比最大的两位数多( )
最小的两位数与最大的两位数相差( )
17、用4和8可以组成的两位数是( )或( )
18、用2、5、9可以组成哪些两位数( ),其中最大的数是( ),最小的两位数是( ),请从大到小排列( )
19、 一个两位数,个位上是8,十位上是7,这个数是( ),它最接近的.整十数是( )。
20、写出4个个位上是8的两位数:( )( )( )( )
写出4个十位上是3的两位数:( )( )( )( )
写出个位和十位上的数字相同的数:( )( )( )( )
21、与69的相邻的数是( )( ),与30相邻的数( )( )
22、十个10是( ),减去( )个十是70
23、看钟面填数。
24、找规律填空。
①画一画:□○△□○△□○△□○△□
②填一填:35、30、25、 、 、 。
21、24、27、 、 、 。
25、最大的两位数是( ),最小的两位数是( ),最大的两位数比最小的两位数多( )。
26、58里面有( )个十和( )个一
27、74中的7在( )位上,表示7个( ),4在( )位上,表示4个( )。
28、一个数的十位上是6,个位上是2,这个数是( )
29、写出下面各数
三十五八十 一百三十二 十七 35 40 68 29
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
30、70的前面一个数是,后面一个数是
31、5角=( )分 36分=( )角( )分
8元5角=( )角?
1元=( )角
2角+8角=( )元
1元-7角=( )角
4元+8角=( )元( )角
5角4分-8分=( )角( )分
32、 35比10多( ) 20比63少( )
34比( )多8 ( )比24多7比57少9的数是( ) 比64多7的数是( )
( )比30少8
33、把下面各数按要求填在里。
49387557846310036
(( ( ( ( ( (( )
解决问题。
1、一本书有86页,小明看了30页,小红比小明多看了8页。
(1)小红看了多少页?
(2)小明还剩下多少页没有看?
2、一本科技书有78页,小明看了一部分后还剩20页,已看了多少页?
3、课外活动做游戏的有43个同学,踢足球的比做游戏的少10人同学,踢足球的有多少个同学?
4、动场上跑步的有45人,跳高的比跑步的多20人,跳高的有多少人??
5、骆驼能活25年,大象能活80年,大象比骆驼多活几年??
6、校园里有32棵柏树,48棵柳树,25棵松树。
(1)柏树和柳树共有几棵?
(2)松树比柳树少几棵?
(3)柏树比松树多几棵?
(4)松树和柏树共有几棵?
(5)三种树一共有几棵??
7、爷爷58岁,小华6岁,爷爷比小华大多少岁?
8、二年级有男同学38人,女同学41人, (提出问题并解答)
9、小兰今年9岁,妈妈今年36岁,妈妈和小兰相差多少岁?
10、木工组修理一批桌子,已经修好了38张,还有7张没修,这批桌子有多少张?
11、小明上午写了6个生字,下午写了5个,小明这一天共写了多少个生字?
12、小红看一本书,第一天看了9页,还剩下7页没看,这本书一共有多少页?
(1)他们俩一共跳了多少个?
(2)小兰比小明少跳多少个?
1、树上一共有23只 ,飞走了9只,树上还有多少只?
(1)带40元钱买一个书包,应找回多少元?
(2)油画棒比文具盒贵多少元?
(3)你还能提出什么问题?
5、商店卖出了48个西瓜,还剩20个西瓜,商店原来有多少个西瓜?
6、儿童乐园有红色和蓝色的碰碰车35辆,其中蓝色的有6辆,红色的有多少辆?
7、小亮看一本书,已经看了64页,还有8页没看完,这本书共有多少页?
8、一年二班有13个男同学,16个女同学,一年二班一共有多少个同学?
9、数学小组有18个男同学,9个女同学,男同学比女同学多几名?
10、商店卖出了48个西瓜,还剩20个西瓜,商店原来有多少个西瓜?
11、我付65元买一个书包,找回3元。一个书包多少元?
12、花送给幼儿园45朵 ,还剩20朵。一共做了多少朵?