内容
一、气体技术概述 气体技术涉及气体的生产、处理、储存、运输和应用等多个环节,对于保障工业生产、科研实验及环境保护等方面起着至关重要的作用。本规程旨在规范气体技术的操作流程,确保安全、高效、环保的气体管理。
二、气体生产与处理
1. 气体生产应依据相关标准进行,保证纯度、压力和温度等参数符合要求。
2. 对于混合气体的制备,需精确控制各组分比例,确保稳定性和一致性。
3. 气体处理包括净化、干燥、压缩等步骤,以去除杂质、水分和有害成分。
三、气体储存
1. 储气设备应定期检查,确保无泄漏、腐蚀或其他安全隐患。
2. 不同性质的气体应分开储存,避免相互反应。
3. 高压气体储存应遵循减压装置的操作规程,防止超压。
四、气体运输
1. 运输过程中,应遵守交通法规,确保气瓶稳固,避免剧烈震动。
2. 装卸气体时,需使用专用工具,防止静电产生和气体泄漏。
3. 远距离运输需考虑气候条件,防止极端天气影响气体安全。
五、气体应用
1. 应用前,应确认气体种类和纯度,避免误用。
2. 使用气体时,遵循“先开气源后点火”原则,确保安全。
3. 操作结束后,及时关闭阀门,清理现场,确保无遗留气体。
六、安全措施
1. 工作人员需接受专业培训,熟悉气体性质和应急处理措施。
2. 现场配备必要的防护设备,如防毒面具、灭火器等。
3. 定期进行安全检查,对隐患及时整改。
七、环保要求
1. 废弃气体应按环保规定处理,避免排放到大气中。
2. 优化工艺流程,减少能源消耗和排放。
3. 实施气体回收利用,提高资源利用率。
八、记录与报告
1. 气体操作过程应详细记录,包括使用量、时间、操作者等信息。
2. 发现异常情况,立即报告并采取相应措施。
3. 定期对气体技术规程进行审查和更新,以适应技术发展。
标准
本规程参照以下标准执行:
1. iso 10156:2014 - 燃烧和热解的气体-热值的计算方法
2. osha 1910.104 - 压缩气体安全规定
3. nfpa 55:2017 - 储存和处理压缩气体的标准
4. acgih tlv - 气体和蒸气的职业暴露限值
所有操作人员必须熟知并严格遵守以上标准和规程,确保气体技术的安全、高效和环保。
气体技术规程范文
第1篇 二氧化碳气体保护焊安全操作规程技术交底
1.作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在瓶嘴的侧面。
2.作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。
3.二氧化碳气体瓶宜放在阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。
4.二氧化碳气体预热器端的电压,不得大于36v,作业后,应切断电源。
5.焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。
6.现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。
7.高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。
8.当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的工件时,应先消除容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质;对存有残余油脂的容器,应先用蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备;容器内照明电压不得超过12v,焊工与焊件间应绝缘;容器外应设专人监护。严禁在已喷涂过油漆和塑料的容器内焊接。
9.对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装有易燃、易爆物品的容器严禁进行焊接和切割。
10.焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩、呼吸滤清器或采取其他防毒措施。
11.当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。
12.雨天不得在露天电焊。在潮湿地带作业时,操作人员应站在铺有绝缘物品的地方,并应穿绝缘鞋。
第2篇 二氧化碳气体保护焊:安全操作规程技术交底
1.作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在瓶嘴的侧面。
2.作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。
3.二氧化碳气体瓶宜放在阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。
4.二氧化碳气体预热器端的电压,不得大于36v,作业后,应切断电源。
5.焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。
6.现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。
7.高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。
8.当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的工件时,应先消除容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质;对存有残余油脂的容器,应先用蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备;容器内照明电压不得超过12v,焊工与焊件间应绝缘;容器外应设专人监护。严禁在已喷涂过油漆和塑料的容器内焊接。
9.对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装有易燃、易爆物品的容器严禁进行焊接和切割。
10.焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩、呼吸滤清器或采取其他防毒措施。
11.当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。
12.雨天不得在露天电焊。在潮湿地带作业时,操作人员应站在铺有绝缘物品的地方,并应穿绝缘鞋。
第3篇 有毒有害气体检测安全技术规程
(一)可燃性气体检测
1、可燃气体的爆炸范围和爆炸极限
可燃性气体在空气中可能会发生燃烧(即在点燃后,火焰会从燃点开始扩散)和爆炸时的周围环境必须符合四个条件,即适量的氧气、适量的可燃性气体、点火源以及足够的分子能量,这样才能维持燃烧的链式反应。如果这四个条件中的任何一个没有或不足,燃烧或爆炸就不可能发生。
我们将空气混合物中可燃性气体可以发生燃烧时的最低体积浓度%vol称为燃烧下限lfl%。将空气混合物中可燃性气体可能被点燃后发生爆炸时的最低体积浓度%vol称为爆炸下限lel%。
从定义上可以看出,燃烧下限lfl%和爆炸下限lel%两者的含义是不同的。但在实际应用上的方便,可以不加区分,互相替代使用。不同的可燃性气体有不同的lfl/ lel。低于lfl/ lel的可燃性气体或蒸气,由于对氧气的比例太低,不可能发生燃烧或爆炸。
大多数的(不是全部)可燃性气体或蒸气还具有一个高限体积浓度,在此浓度值之上,可燃性气体也不会发生燃烧或爆炸。燃烧上限ufl%是可燃性气体的蒸气和气体在空气中支持燃烧的最大体积浓度。相对应的还有一个爆炸上限ufl%。同样在使用上也不加区分。高于ufl/ uel时,因为可燃性气体的蒸气和气体同氧气的浓度比例太大,或者说由于氧气不足,以至于无法反应而是燃烧扩散,也就不会发生燃烧或爆炸。
2、可燃性气体的定义
在实际工作中,可燃性气体泛指具有燃烧能力的气体。在国际上一般采用列举(特指)和概括两种方式来规定那些气体是可燃性气体(简称可燃气体)。
(1)国际上特指以下32种气体为可燃气体。
序
可燃性气体
爆炸范围,%
序
可燃性气体
爆炸范围,%
1
丙烯腈
3~7
17
环丙烷
2.4~10.4
2
丙烯醛
2.8~31
18
二甲胺
2.8~14.4
3
乙炔
2.5~81
19
氢气
4~75
4
乙醛
4.1~55
20
三甲胺
2~11.6
5
氨
16~25
21
二硫化碳
1.3~44
6
一氧化碳
12.5~74.5
22
丁二烯
2~11.5
7
乙烷
3~12.5
23
丁烷
1.9~8.5
8
乙胺
3~14
24
丁烯
1.6~9.3
9
乙苯
1~6.7
25
丙烷
2.2~9.5
10
乙烯
3.1~32
26
丙烯
2.4~10.3
11
氯乙烷
3.8~15.4
27
溴甲烷
13.5~14.5
12
氯乙烯
4~22
28
苯
1.3~7.1
13
氯甲烷
10.7~17.4
29
甲烷
5.3~14
14
环氧乙烷
3~100
30
甲胺
4.9~20.7
15
环氧丙烷
2.1~21.5
31
二甲醚
3.4~27
16
氰化氢
6~14
32
硫化氢
4.3~45
备注:爆炸范围是指lel和uel的体积浓度。
(2)其他气体符合下列条件之一者,也属于可燃气体范畴。
①爆炸下限在10%vol以下者。
②爆炸范围的上限与下限之差在20%vol以上者。
3、常用的浓度单位工程换算
(1)%lel与%vol的换算
当可燃气体达到了爆炸下限lel以上就有爆炸的危险。为了计算和说明的方便,一般将爆炸下限lel分成100份,即1lel = 100%lel;例如,甲烷单独存在100%lel = 5.3%vol,也就是说,一般的报警单位10%lel = 0.53%vol;即当环境中甲烷浓度0.53%体积时,就应该意识到危险状况的存在。
(2)%vol与ppm、ppb的换算
1ppm = 1000ppb =1/1000000vol或者10-6
100%vol = 106ppm = 109ppb
以甲烷为例,10%lel = 0.53%vol = 53000ppm
如果是苯,则10%lel = 0.13%vol = 13000ppm(注意,苯的立即致死量idhl是500ppm!!)
(3)ppm与mg/m3的换算
v(ppm)= w(mg/m3)×24.46 / m
式中:v为ppm为单位的体积浓度值。
w为mg/m3为单位的绝对重量的浓度值。
m为待测物质的分子量。
(4)混合可燃气体的爆炸极限的计算
用vn表示一种可燃气体在混合物中的体积分数,leln和ueln分别为此种可燃气体的爆炸下限和爆炸上限,则混合气体的爆炸下限为:
lel = 100/(v1/lel1+ v2/lel2+ … +vn/leln)(%vol)
同理,混合气体的爆炸上限为:
uel = 100 /(v1/uel1+ v2/uel2+ … +vn/ueln)(%vol)
例如,一天然气的组成为甲烷80%vol(lel甲烷=5.3),乙烷15%vol(lel乙烷=3.0)、丙烷4%vol(lel丙烷=2.2)、丁烷1%vol(lel丁烷=1.9),则此天然气的爆炸下限为:
lel天然气= 100 /(805.3 + 15/3.0 + 4/2.2 + 1/1.9)= 4.46%vol
从以上计算可以看出,尽管甲烷占了大多数,但由于乙烷、丙烷和丁烷的存在,使得天然气的爆炸下限相对于甲烷降低了很多。
4、可燃气体爆炸场所的划分
世界各国对危险场所区域划分不同,但大致分为两大派系:中国和大多数欧洲国家采用国际电工委员会(iec)的划分方法,而以美国和加拿大为主要代表的其他国家采用北美划分方法。
中国标准gb3836.14--2000《爆炸性其他环境用电气设备,第14部分:危险场所分类》的规定如下:
0区爆炸性气体环境连续出现或长时间存在的场所。
1区在正常运行时可能出现爆炸性气体环境的场所。
2区在正常运行时不可能出现爆炸性气体环境,如果出现也是偶尔发生,并且仅是短时间存在的场所。
0区,一般只存在于密闭的容器、储罐等内部气体空间;在实际防爆设计过程中1区也很少涉及;大多数情况属于2区。
美国、加拿大等北美国家危险区域的划分依据nec(美国国家电气规程)的定义,对爆炸性气体环境划分为1区、2区(没有0区)。
两者之间的对应关系大致如下:
气体iec 0区、1区——nec 1区
iec 2区——nec 2区
具体的比较见下表。
爆炸性
物质
区域定义
iec
标准
nec
标准
气体
class ⅰ
在正常情况下,爆炸性气体混合物连续或长时间存在的场所。
0区
div. 1
在正常情况下,爆炸性气体混合物有可能出现的场所。
1区
在正常情况下,爆炸性气体混合物不可能出现,仅仅在不正常情况下偶尔或短时间出现的场所。
2区
div. 2
可燃性粉尘或纤维
class
ⅱ/ⅲ
在正常情况下,爆炸性粉尘或可燃性纤维与空气的混合物可能连续出现、短时间频繁地出现或长时间存在的场所。
10区
div. 1
在正常情况下,爆炸性粉尘或可燃性纤维与空气的混合物不可能出现,仅仅在不正常情况下偶尔或短时间出现的场所。
2区
div. 2
备注:iec中的“区”的英文定义为zone,而在nec中的“区”的英文定义为division。
4、本质安全型电气设备的安全特点
(1)本质安全型电气设备防爆特点
本质安全型电气设备又称安全火花型电气设备。它的特点时电气设备在正常状态下和故障状态下,电路、系统产生的火花和达到的温度都不会引燃爆炸性混合物。它的防爆主要有以下措施来实现。
①采用新型集成电路元件等组成仪表电路,在较低的工作电压和较小的工作电流下工作。
②用安全栅把危险场所和非危险场所的电路分隔开,限制由非危险场所传递到危险场所去的能量。
③仪表的连接导线不会形成过大的分布电感和分布电容,以减少电路中的储能。
(2)本质安全型电气设备应用特点
由于本质安全型电气设备的防爆性能不需要采用通风、充气、充油、隔爆等外部措施实现,而是通过其电路设计本身实现,因而是本质安全。这类电气设备可适用于一切危险场所和一切爆炸性气体、蒸气混合物,并可以在通电的情况下进行维修和调整。但是,对于本安型固定式仪表,由于必须使用控制器(或系统)。所以不能单独使用,必须和本安关联设备(安全栅)、外部配线一起组成本安系统,才能发挥防爆功能。
(3)本安型ia和ib两种的区别
ia等级:在正常工作状态下,以及电路中存在一个故障或两个故障时,均不能点燃爆炸性气体混合物。在ia型电路中,工作电流被限制在100ma以下。
ib等级:在正常工作状态下,以及电路中存在一个故障时,不能点燃爆炸性气体混合物。在ib型电路中,工作电流被限制在150ma以下。
从本质安全角度讲,ia型适用于0区和1区,以及工厂;而ib型仅适用于1区和煤矿井下。
5、防爆方法对危险场所的适用性
序号
防爆型式
代号
国家标准
防爆措施
适用区域
1
隔爆型
d
gb3836.2
隔离存在的点火源
zone1,zone2
2
增安型
e
gb3836.3
设法防止产生点火源
zone1,zone2
3
本安型
ia
gb3836.4
限制点火源的能量
zone0~2
ib
gb3836.4
4
正压型
p
gb3836.5
危险物质与点火源隔开
zone1,zone2
5
充油型
o
gb3836.6
zone1,zone2
6
充砂型
q
gb3836.7
zone1,zone2
7
无火花型
n
gb3836.8
设法防止产生点火源
zone2
8
浇封型
m
gb3836.9
zone1,zone2
9
气密型
h
gb3836.10
zone1,zone2
6、爆炸性危险气体的分类
按照爆炸性危险气体的形态存在的场所,防爆等级分为三大类,见下表。
工况类别
气体分类
代表性气体
最小引爆火花能量,mj
矿井下
ⅰ
甲烷
0.280
矿井外的工厂
ⅱa
丙烷
0.180
ⅱb
乙烯
0.060
ⅱc
氢气
0.019
粉尘纤维类
ⅲ
爆炸性危险气体的分类、分级、分组举例见电气安全技术问答部分。
7、防爆标志格式说明
(1)工厂或矿区中常用防爆电气设备要求的防爆形式
①e_(ia)ⅱct6
标志内容
符号
含义
防爆声明
e_
符合某种防爆标准,如我国的国家标准。
防爆方式
ia
采用ia级本质安全防爆方法,可安装在0区。
气体类别
ⅱc
被允许涉及ⅱc类爆炸性气体。
温度组别
t6
仪表表面温度不超过85℃。
②e_(ia)ⅱc
标志内容
符号
含义
防爆声明
e_
符合某种防爆标准,如我国的国家标准。
防爆方式
ia
采用ia级本质安全防爆方法,可安装在0区。
气体类别
ⅱc
被允许涉及ⅱc类爆炸性气体。
(2)煤矿中常用防爆电气设备要求的防爆形式
煤矿用隔爆型电气设备为e_dⅰ,本质安全型为e_ibⅰ或e_iaⅰ,隔爆兼本质安全型为e_d(ib)ⅰ或e_d(ia)ⅰ,增安型为e_eⅰ,增安兼本质安全型为e_e(ib)ⅰ。
氧气浓度与深度之间的关系
美国niosh测出氧气浓度随深度变化的数据见下表。
由表面开始的深度,m
氧气浓度,%
由表面开始的深度,m
氧气浓度,%
1.5
20.5
4.0
6.5
2.0
20.0
5.0
4.0
3.0
14.0
从上表中可以看出,如果仅仅从有限空间的进入点检测氧气浓度,可能就无法发现在有限空间底部的烟气不足。因此,所有的有限空间的垂直分布都要进行氧气浓度的检测。
工业中常见的几种耗氧行为
在工业生产过程中,常见的耗氧行为有:
(1)微生物行为。微生物(包括植物微生物和动物微生物)通过新陈代谢的方式消耗氧气。如苔藓、绿藻的生长,动物身体的腐败等都要消耗氧气。曾有报道,在一个2.23m3干燥的空间,因底部有一只老鼠的粉状尸体,因尸体分解导致其空间底部的氧气浓度只有5%。
(2)氧化。有机物的氧化、钢铁的生锈就是一种消耗氧气的氧化过程。在像水罐、船舱等有湿度的情况下,金属的锈蚀可以引起强烈的氧气不足。
(3)燃烧。可燃物的燃烧可以不仅仅消耗氧气,同时还会产生大量的有毒物质,包括氮、碳、硫的氧化物。
(4)吸收或吸附。有些物质(如活性炭)可以在空气中直接吸收或吸附氧气,造成缺氧。
各类传感器的使用寿命
各类传感器都具有一定的使用寿命(或称为使用年限)。一般将来,lel传感器的使用寿命较长,可以使用3年。红外和光离子化检测仪的使用寿命为3年或更长一些。电化学特定气体传感器的使用寿命相对短一些,一般在1~2年。氧气传感器的使用寿命最短,一般只有1年左右的时间。
电化学传感器的使用寿命取决于其中电解液的干涸,所以如果长时间不用,将其密封放在较低温度的环境中可以延长一些使用寿命。
对于固定式仪器由于体积相对较大,传感器的使用寿命也较长一些。
常见气体传感器的检测范围、分辨率和最高承受浓度
常见气体传感器的检测范围、分辨率和最高承受浓度见下表。
传感器
检测范围,ppm
分辨率
最高浓度,ppm
一氧化碳
0~500
1
1500
硫化氢
0~100
1
500
二氧化硫
0~20
0.1
150
一氧化氮
0~250
1
1000
氨气
0~50
1
200
氰化氢
0~100
1
100
氯气
0~10
0.1
30
voc
0~5000
0.1
--
备注:voc是有机有毒有害气体的统称。
各类有毒有害气体检测器都有其固定的检测范围,即线性范围,只有在线性范围内进行检测,才能保证检测的准确性。在线性范围之外的检测,其准确性是不能被保证的。此外,长时间在线性范围之外进行检测,将使传感器遭到永久性的破坏。
例如,lel传感器,如果不慎在超过100%lel的环境中使用,就有可能彻底烧毁传感器。而对于有毒有害气体传感器长时间工作在较高浓度下,就会造成电解液饱和,使传感器遭到永久性的破坏。所以,对于便携式或固定式检测器在使用时发出超限信号时,要立即离开现场,以保证人员和检测仪器的安全。
使用气体检测仪器时应注意的问题
在选择和使用气体检测仪器时应注意的以下问题:
(1)对有毒有害气体的检测与可燃气体的检测同等重要。
(2)对可能引起慢性中毒的气体检测与可能引起急性中毒的气体检测同等重要。
(3)检测可燃气体时应同时检测有毒有害气体的浓度。
(4)检测可燃气体浓度时应考虑标定气体影响。
使用催化燃烧式的可燃气体检测仪器(lel)并不是对所有的可燃气体都有效,因为可燃气体检测仪器是使用甲烷进行标定的,当检测甲烷以外的可燃气体的下限浓度时,要远远高于他们的允许安全浓度。对于苯、氨气等具有可燃性和有毒性的气体,单纯检测其可燃性时是十分危险的。例如,苯的爆炸下限是1.3%,它在lel检测仪上的校正系数是2.8,也就是说,苯在一个用甲烷标定的lel检测仪上的显示的浓度只是其实际浓度的30%;这样,用lel可以检测道德苯的最低警报浓度是10%lel=10%×1.3%×2.8=36400ppm,这个浓度同苯的立即致死浓度(idhl)的500pmm相比要高近70倍。或者说,在lel检测报警仪对苯的10l%lel报警时,现场工作人员的生命已经受到了极大的威胁。
可燃及有毒有害气体检测仪的选用技术要求
可燃及有毒有害气体检测仪的安装技术要求
(1)可燃及有毒有害气体检测仪的安装技术要求
①检测器宜布置在可燃气体或有毒气体释放源的最小频率风向的上风侧。
②可燃气体检测器的有效覆盖水平平面半径,室内宜为7.5m;室外宜为15m。在有效覆盖面积内,可设一台检测器。
有毒气体检测器与释放源的距离,室外不宜大于2m,室内不宜大于1m。
③应设置可燃气体或有毒气体检测报警仪的场所,宜采用固定式;当不具备设置固定式的条件时,应配置便携式检测报警仪。
④可燃气体和有毒气体检测报警系统宜为相对独立的仪表系统。
⑤在露天或半露天布置的设备区内,当检测点位于释放源的最小频率风向的上风侧时,可燃气体检测点与释放源的距离不宜大于15m,有毒气体检测点与释放源的距离不宜大于2m;当检测点位于释放源的最小频率风向的下风侧时,可燃气体检测点与释放源的距离不宜大于5m,有毒气体检测点与释放源的距离宜小于lm。
⑥可燃气体释放源处于封闭或半封闭厂房内,每隔15m可设一台检测器,且检测器距任一释放源不宜大于7.5m。
有毒气体检测器距释放源不宜大于1m。
⑦比空气轻的可燃气体释放源处于封闭或半封闭厂房内,应在释放源上方设置检测器,还应在厂房内最高点易于积聚可燃气体处设置检测器。
⑧不在检测器有效覆盖面积内的下列场所,宜设检测器:
a 使用或产生液化烃和/或有毒气体的工艺装置、储运设施等可能积聚可燃气体、有毒气体的地坑及排污沟最低处的地面上。
b 易于积聚甲类气体、有毒气体的“死角”。
⑨检测比空气重的可燃气体或有毒气体的检测器,其安装高度应距地坪(或楼地板)0.3-0.6m。
注:气体密度大于0.97kg/m3(标准状态下)的即认为比空气重;气体密度小于0.97kg/m3(标准状态下)的即认为比空气轻。
⑩检测比空气轻的可燃气体或有毒气体的检测器,其安装高度宜高出释放源0.5--2m。
(2)可燃及有毒有害气体检测仪控制器的安装技术要求
①可燃气体控制器应安装在仪表室等非防爆场所,严禁安装在防爆场所。
②控制器无论何种安装方式,应确保固定牢靠,避免震动、灰尘和水,环境应符合仪器说明要求。
③控制器应采用相对清洁的电源,避免与大型电机设备使用同路电源。
④控制器应外壳接地或电源插头的地线接地。
第4篇 气体渗碳炉热处理工安全技术操作规程
1 明确炉前操作负责人。
2 检查设备的接地情况,并将测温仪表按工艺规范正确调整好。
3 检查炉盖的升降速度是否正常。
4 风扇转动应平稳、无噪声,风扇的冷却水应完好无堵塞,工作中冷却出水温度不得大于60℃。
5 输油管道应完好,畅通无渗漏,排气管滴油器必须畅通。
6 炉内无炭黑之类脏物,炉子应密封良好。
7 检查吊车的吊放工具是否良好,工件起吊后,吊钩下严禁站人。
8 在风扇轴迷宫装置通冷却水后,方可给设备通电。
9 600℃以上严禁关掉风扇。
10 750℃以下严禁向炉内滴注煤油,以防爆炸。
11 rjj系列气体渗碳炉最高工作温度不得超过950℃,各设备装炉量及最大工件尺寸必须符合设备要求。
12 工件进出炉时,设备应断电,吊车的升降速度应缓慢,起吊工件时吊钩应对中。
13 在渗碳的过程中,必须点燃炉内排出的废气。
14 渗碳工作完毕必须立即用辅助炉盖将渗碳罐盖好。
15 液体渗碳剂、甲醇等均属易燃物,必须按“四定”要求妥善保存,注意防火防爆。
16 定期清理设备的卫生,并随时注意设备附近的环境卫生。
第5篇 某工程二氧化碳气体保护焊安全操作规程技术交底
1.作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在瓶嘴的侧面。
2.作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。
3.二氧化碳气体瓶宜放在阴凉处,其最高温度不得超过3o℃,并应放置牢靠,不得靠近热源。
4.二氧化碳气体预热器端的电压,不得大于36v,作业后,应切断电源。
5.焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。
第6篇 co2气体保护焊机安全技术操作规程
1、操作人员应了解其工作原理,熟练掌握操作程序和设备性能。施焊前穿戴好劳保用品。
2、焊机应放置在距墙和其他设备300mm以外的地方,应通风良好,不得放置在潮湿和灰尘较多处。焊机必须接地良好,焊机上不得堆放杂物。
3、施焊前工作地的风速应较小,必要时采取防风措施。
4、co2气瓶应可靠固定,气瓶阀门不得有污物,开启气瓶阀门时,不得将脸靠近出气口。采用电加热器使co2充分气化时,电压应低于36v,电加热器外壳接地良好。co2气管连接应牢固无泄漏现象。
5、焊枪的喷嘴与导电部件的绝缘应良好,导电嘴和焊丝的接触应可靠;送丝机构、减速箱的润滑应良好。
6、施焊人员合电焊机开关时,应戴干燥绝缘手套,另一只手不得按在电焊机的外壳上。
7、根据焊件的形状、材质、厚度、焊接位置等情况选择正确的焊接参数进行施焊。
8、焊接过程中如发现焊机冒烟等故障现象,必须停机检查,不得带病使用。
9、不准在带压、带气、带电设备上进行焊接,特殊情况下须焊接时,应制定周密的安全措施,做到安全可靠才可施焊。
10、在金属容器内焊接时,应设专人监护,并保持容器通风良好。容器内使用的行灯电压不准超过12v,行灯变压器的外壳应可靠接地,不准使用自偶变压器。常压密闭容器不得施焊。
11、工作时,随时清除粘附在喷嘴上的金属飞溅物,随时注意co2气瓶中co2气存量,剩余压力不得小于1mpa。
12、施焊时,不得观看焊嘴孔,不得将焊枪前端部靠近脸部、眼睛、及身体,不得将手、指、头发衣服等靠近送丝轮等回转部位。
13、作业结束后,断开电源,清理卫生。并检查设备技术状况,确保状态良好。
14、定期清理焊机,定期检查送丝软管,不得被污垢堵塞。
第7篇 气体保护焊作业安全技术规程
ü 二氧化碳气体保护焊
(1)凡从事二氧化碳气体保护焊的工作人员应严格遵守焊接作业相关规定。
(2)焊机不应在漏水、漏气的情况下运行,工作场所应通风良好。
(3)二氧化碳气体保护焊焊接时飞溅大,弧光辐射强烈,工作人员应穿白色工作服,戴手套和防护面罩。
(4)装有二氧化碳的气瓶不应在阳光下曝晒或接近高温物体,以免引起瓶内压力增大而发生爆炸。
(5)二氧化碳气体预热器的电源应采用36v电压,工作结束时应将电源切断。
ü 手工钨极氩弧焊
(1)从事手工钨极氩弧焊的工作人员应严格遵守焊接作业相关规定。
(2)焊机内的接触器、断电器的工作元件,焊枪夹头的夹紧力以及喷嘴的绝缘性能等,应定期检查。焊机不应在漏水、漏气的情况下运行。
(3)高频引弧焊机或焊机装有高频引弧装置时,焊炬、焊接电缆都应有铜网编制的屏蔽套,并可靠接地。使用高压脉冲引弧稳弧装置,应防止高频电磁场的危害。
(4)手工钨极氩弧焊,焊工除戴电焊面罩、手套和穿白色帆布工作服外,还宜戴静电口罩或专用面罩,并有切实可行的预防和保护措施。
第8篇 工程二氧化碳气体保护焊安全操作规程技术交底
1.作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在瓶嘴的侧面。
2.作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。
3.二氧化碳气体瓶宜放在阴凉处,其最高温度不得超过3o℃,并应放置牢靠,不得靠近热源。
4.二氧化碳气体预热器端的电压,不得大于36v,作业后,应切断电源。
5.焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、瓦斯中毒和火灾等事故的安全措施。
第9篇 气体分析员技术操作规程
第1条 必须持有效证件上岗。
第2条 必须熟悉色谱仪的结构、性能。
第3条 使用前检查仪器各气路、电源、设备,确保完好。
第4条 开动记录仪,进行基线调零和记录调零。
第5条 用适量的标准气体标定仪器的灵敏度,求出定量校正值。
第6条 采用六通阀进样,每种样品分析2次,取平均值。如偏差较大应重新进样分析。
第7条 零点漂移、噪间电平、灵敏度等出现异常时,停止气体分析,查找原因,故障排除后对仪器的灵敏度重新标定。
第8条 氢火焰检测器必须用99.9%或99.99%高纯度载气,且其中不含其它污染物。
第9条 配制溶液比例要适当,溶解强碱时不能用手触摸,稀释硫酸必须将酸慢慢倒入水中。
第10条 化验室温度不低于18摄氏度,分析过程中的室温要保持不变。
第11条 停机时,应先关闭色谱仪的电源,各旋钮打到初始位置,然后关闭空气发生器电源,过15分钟后再关闭氢气,最后关闭载气。
第12条 分析气体要做详细记录,结果及时汇报有关领导。
本工种存在危险因素及防范措施
第13条 本工种存在危险因素是:通风不良人感到不适。
第14条 保证通风良好,气体流通。
第10篇 二氧化碳气体保护焊工安全技术操作规程
1)作业前,二氧化碳气体应先预热15min。开气时,操作人员必须站在瓶嘴的侧面。
2)作业前,应检查并确认焊丝的进给机构、电线的连接部分二氧化碳气体的供给系统及冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。
3)二氧化碳气体宜放在阴凉处,其最高温度不得超过30℃,并应放置牢靠,不得靠近热源。
4)二氧化碳气体预热器端的电压,不得大于36v。作业后,应切断电源。
5)焊接操作及配合人员必须穿戴劳动保护用品。并必须采取防止触电、高处坠落、火灾等事故的安全措施。
6)现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。
7)高处焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监护。
8)当需施焊压力容器、密封容器油桶、管道、沾有可燃气体和溶液的工件时,应先消除容器及管道内的压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质。对存有残余油脂的容器,应先用蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器内应留出气孔,必要时在进、出口处装设通风设备。容器内照明电压不得超过12v,焊工与焊
件应绝缘。容器外应设专人监护。严禁在喷涂或涂装过塑料的容器内焊接。
9)对承压状态的压力容器及管道、带电设备、承载结构的受力部分和装有易燃、易爆物品的容器严禁进行焊接和切割。
10)焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩,呼吸滤清器或采取其他防毒措施。
11)当消除焊缝、焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。
第11篇 气体钢瓶使用安全技术规程
1.气体钢瓶必须存放于通风、阴凉、干燥、隔绝明火、远离热源、防暴晒的房间内由专人管理,要有醒目标志,如“乙炔危险,严禁烟火”等标志。除不燃气体外,一律不准进入实验室内。
2.使用中的气瓶,要直立,防止倾倒。
3.搬运气体钢瓶时,要轻拿轻放,防止摔掷、敲击、滚滑或剧烈震动。搬前要戴上气瓶安全帽,以防不慎摔断瓶嘴,发生事故。钢瓶必须具有两个橡胶防震圈。乙炔气瓶严禁卧倒滚动。严禁可燃气体钢瓶(乙炔气瓶、氢气瓶)与氧气瓶、氯气瓶同车运输或储放在一起。
4.气瓶应进行耐压试验,定期检验。
5.气瓶减压器应专用,安装时要上紧,不得漏气。开闭时,应站在气瓶侧面,动作要慢,以减少气流磨擦产生静电。
6.乙炔气等可燃性气体瓶不得放于绝缘体上,以利于静电释放。可燃性气瓶与明火距离不应小于1o米。
7.氧气瓶及专用工具禁止与油类接触,操作人员不能穿戴有油脂或油污工作服和手套等。
8.气瓶内气体不能全部用尽,一般保持在0.2—1.0mpa余压。
9.各种气瓶气体专用,不得混装。
10,禁止将装有气体的钢瓶与电器设备及电线等相接触。
11.氧气钢瓶与反应器等连接,应加逆火装置或缓冲器。
12.连接钢瓶的玻璃缓冲瓶,必须加铁丝网罩,瓶上安装压力柱。
13.使用高压气体钢瓶时,必须加装减压器、调节压力时,要用减压阀来调节,不得直接使用钢瓶上的开关。
第12篇 气体保护焊安全技术操作规程
1检查作业场所的环境、安全设施,确认符合有关安全规定,方可进行作业。作业前,按规定正确穿戴和使用劳动防护用品。同时遵守电焊及相关设备安全技术操作规程。
2不熟悉本设备性能者严禁使用。
3工作时必须注意力集中,注意防止焊接丝头甩出伤人。
4工作前检查设备是否正常,根据需要,做好预热工作。
5开气时,操作者必须站在瓶咀的侧面。
6移动co2气瓶时,避免压坏焊接电线,以免漏电事故发生,气瓶的使用,运输必须遵守气瓶监察规程。
7修理设备时,必须断电,以免发生危险。
8作业结束,场地清理干净,切断焊机及其它相关设备电源,将工位器具摆放在指定的安全位置。
第13篇 气体分析室岗位技术安全操作规程
1.主题内容和适用范围
明确气体分析室岗位职责作业活动标准及从事本项作业的相应安全要求。确保本岗位职责按要求完成,确保气体分析室人员的安全健康,本操作规程:适用于质量计量处气体分析室岗位。
2.引用文件
所引用文件已在5条款中列出
3.术语
4.职责
4.1负责公司的安全动火分析工作。
4.2负责煤气组分的分析工作及使用电捕时的煤气含量分析工作。
4.3负责硫铵的分析工作。
4.4负责煤焦磷含量的分析工作。
4.5负责工业萘、精萘的分析工作。
4.6负责透平油分析工作。
4.7负责废酸的分析工作。
4.8负责粗苯、焦油的色谱分析工作。
4.9负责本岗位仪器、设备的正确使用、维护和保养工作。
5.操作标准
5.1准备工作
检查采样分析所需工具仪器是否齐全、完好,做好试样脱水及干燥处理,需预热的设备进行升温预热。
5.2操作标准
5.2.1硫酸铵质量技术要求执行《硫酸铵》gb535-1995
5.2.1.1采样执行《焦化产品固体类取样方法》gb/t2000-2000
5.2.1.2质量要求,氮含量测定,水分测定,游离酸含量测定执行《硫酸铵》gb535-1995
5.2.2粗萘,工业萘质量技术要求执行《焦化萘》gb/t6699-1998
5.2.2.1采样同5.2.1.1
5.2.2.2灰分测定执行《萘灰分的测定方法》gb3069.1-86
5.2.2.3结晶点测定执行《萘结晶点的测方法》gb6701-86
5.2.2.4不挥发物的测定执行《萘不挥发物的测定方法》gb6701-86
5.2.2.5酸洗比色的测定执行《萘酸洗比色的实验方法》gb6702-86
5.2.3煤气质量技术要求执行《人工煤气》gb13612-92
5.2.3.1煤气组分分析执行《人工燃气主组分的化学分析方法》gb12205-90
5.2.3.2焦油和灰尘含量的测定执行《城市燃气中焦油和灰尘含量的测定方法》gb12208-90
5.2.3.3萘含量的测定执行《城市燃气中萘含量测定,苦味酸法》gb12209.1-90
5.2.3.4氨含量的测定执行《城市燃气中氨含量测定》gb12210-90
5.2.3.5硫化氢含量的测定执行《城市燃气中硫化氢含量的测定》gb12211-90
5.2.3.6煤气密度的计算
依各主组分的含量分别按:co2:1.9768 cnhm:1.7068 o2:1.42895 co:1.25 h2:0.08987 ch4:0.7168 n2:1.2505进行计算
5.2.3.7煤气热值的计算
煤气热值的计算公式为:q=(141.9×cnhm%+30.56×co%+26.21×h2%+86.99×ch4%)×4.1868kj/m3
5.2.3.8煤气含氧动火分析执行《人工燃气主组分的化学分析方法》gb12205-90
5.2.4透平油
5.2.4.1闪点执行《木材防腐油试方法、闪点测定方法》yb/t5172-93
5.2.4.2粘度执行《洗油粘度的测定方法》yb/t5030-93
5.2.4.3酸值的测定
(1)称取油8-10g(准至0.1g)于锥形瓶1中,在另一锥形瓶2中加入50ml乙醇,装上回流冷凝管,不断摇动煮沸5分钟,加入0.5ml碱蓝溶液(即碱蓝6b),趁热用0.5mol/l koh-c2h50溶液中和,直至由蓝色变成浅红色,后将其注入锥形瓶1中,装上回流冷凝管,不断摇动下煮沸5分钟,加入5ml碱蓝6b,趁热用0.5mol/l的 koh-c2h50滴定,直到由蓝色变成红色
(2)计算:(mg/ml)
其中v:消耗的koh-c2h5o的溶液体积ml
t:0.05ml/lkoh-c2h5o的滴定度mg/ml
g:样品重量(g)
5.2.5.1含油量测定
准确称取100克废酸,注入分液漏斗,再加入20克粗酚,充分均匀,静置24小计时后,分离现废酸及粗酚,分别称其重量c1,c2,则含油量:m=(g2-20)-100×100%
或m=(100-g1)/100×100%
将废酸注入250ml的量筒中,将1.30~1.50g/cm3密度计慢慢放入(注意不靠量筒壁,且密度计底部距量筒底部不少于2cm)待密度计不再下沉后读数,根据密度查表得出含酸量.
废酸百分浓度及密度关系
密度(d204) | 浓度% | 密度(d204) | 浓度% |
1.2855 | 38.00 | 1.3854 | 49.00 |
1.2865 | 38.12 | 1.3894 | 49.41 |
1.2941 | 39.00 | 1.3951 | 50.00 |
1.3028 | 40.00 | 1.4049 | 51.00 |
1.3116 | 41.00 | 1.4148 | 52.00 |
1.3125 | 41.10 | 1.4248 | 53.00 |
1.3205 | 42.00 | 1.4350 | 54.00 |
1.3294 | 43.00 | 1.4400 | 54.49 |
1.3382 | 43.97 | 1.4453 | 55.00 |
1.3384 | 44.00 | 1.4557 | 56.00 |
1.3476 | 45.00 | 1.4652 | 56.90 |
1.3569 | 46.00 | 1.4662 | 57.00 |
1.3639 | 46.74 | 第14篇 二氧化碳气体保护焊机安全技术操作规程 1、操作者必须持电焊操作证上岗。 2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置。 3、打开气瓶盖,将流量调节旋钮慢慢向“open”方向旋转,直到流量表上的指示数为需要值。供气开关置于“焊接”位置。 4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压。 5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接。 6、焊枪开关“on”,焊接电弧的产生,焊枪开关“off”,切换为正常焊接条件的焊接电弧,焊枪开关再次“on”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“off”焊接电弧停止。 7、焊接完毕后,应及时关闭焊电源,将co2气源总阀关闭。 8、收回焊把线,及时清理现场。 9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次。 co2气体保护焊焊接工艺 钢结构二氧化碳气体保护焊工艺规程 1 适用范围 本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保 护焊的基本要求。 注:产品有工艺标准按工艺标准执行。 1.1 编制参考标准《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸》gb.985-88 1.2 术语 2.1 母材:被焊的材料 2.2 焊缝金属:熔化的填充金属和母材凝固后形成的部分金属。 2.3 层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度。 2.4 船形焊:t形、十字形和角接接头处于水平位置进行的焊接. 3 焊接准备 3.1按图纸要求进行工艺评定。 3.2材料准备 3.2.1产品钢材和焊接材料应符合设计图样的要求。 3.2.2焊丝应储存在干燥、通风良好的地方,专人保管。 3.2.3焊丝使用前应无油锈。 3.3坡口选择原则 焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本。 3.4 作业条件 3.4.1 当风速超过2m/s时,应停止焊接,或采取防风措施。 3.4.2 作业区的相对湿度应小于90%,雨雪天气禁止露天焊接。 4 施工工艺 4.1 工艺流程 清理焊接部位 检查构件、组装、加工及 定位 按工艺文件要求调整焊接工艺参数 按合理的焊接顺序进行焊接 自检、交检 焊缝返修 焊缝修磨 合格 交检查员检查 关电源 现场清理 4 操作工艺 4.1 焊接电流和焊接电压的选择 不同直径的焊丝,焊接电流和电弧电压的选择见下表 焊丝直径 短路过渡 细颗粒过渡 电流(a) 电压(v) 电流(a) 电压(v) 0.8 50--100 18--21 1.0 70--120 18--22 1.2 90--150 19--23 160--400 25--38 1.6 140--200 20--24 200--500 26--40 4.2 焊速:半自动焊不超过0.5m/min. 4.3 打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边。 4.4 不应在焊缝以外的母材上打火、引弧。 4.5 定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求。钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度。定位焊焊缝上有气孔和裂纹时,必须清除重焊。 4.9焊接工艺参数见表一和表二 表一: φ1.2焊丝co2焊对接工艺参数 接头形式 板厚 层数 焊接电流(a) 电弧电压(v) 焊丝外伸(mm) 焊机速度m/min 气体流量l_min 装配间隙(mm) 6 1 270 27 12-14 0.55 10-15 1.0-1.5 6 2 190210 1930 15 0.25 15 0-1 8 2 120-130130-140 26-2728-30 15 0.55 20 1-1.5 10 2 130-140280-300 20-3030-33 15 0.55 20 1-1.5 10 2 300-320300-320 37-3937-39 15 0.55 20 1-1.5 12 310-330 32-33 15 0.5 20 1-1.5 16 3 120-140300-340300-340 25-2733-3535-37 15 0.4-0.50.3-0.40.2-03 20 1-1.5 16 4 140-160260-280270-290270-290 24-2631-3334-3634-36 15 0.2-0.30.33-0.40.5-0.60.4-0.5 20 1-1.5 20 4 120-140300-340300-340300-340 25-2733-3533-3533-37 15 0.4-0.50.3-0.40.3-0.40.12-0.15 25 1-1.5 20 4 140-160260-280300-320300-320 24-2631-3335-3735-37 15 0.25-0.3 0.45-0.50.4-0.50.4-0.45 20 1-1.5 表二: φ1.2焊丝co2气体保护焊t形接头 接头形式 板厚(㎜) 焊丝直径(㎜) 焊接电流(a) 电弧电压(v) 焊接速度(m/min) 气体流量(l/min) 焊角尺寸(㎜) 2.3 φ1.2 120 20 0.5 10-15 3.0 3.2 φ1.2 140 20.5 0.5 10-15 3.0 4.5 φ1.2 160 21 0.45 10-15 4.0 6 φ1.2 230 23 0.55 10-15 6.0 12 φ1.2 290 28 0.5 10-15 7.0 4.9.1控制焊接变形,可采取反变形措施. 4.9.2在约束焊道上施焊,应连续进行,因故中断,再施焊时, 应对已焊的焊缝局部做预热处理. 4.9.3采用多层焊时,应将前一道焊缝表面清理干净后,再继续施焊. 4.9.4变形的焊接件,可用机械(冷矫)或在严格控制温度下加热(热矫)的方法,进行矫正. 5 交检 6 焊接缺陷与防止方法 缺陷形成原因 防止措施 焊缝金属裂纹 1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快 1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑 夹杂 1.采用多道焊短路电弧2.高的行走速度 1.仔细清理渣壳2.减小行走速度,提高电弧电压 气孔 1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远 1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度 咬边 1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确 1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动 未融合 1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理 1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部 未焊透 1.坡口加工不合适2.焊接技术不高3.热输入不合适 1.加大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高送丝的速度以获得较大的焊接电流 ,保持喷嘴与工件的距离合适 飞溅 1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适 1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感 蛇行焊道 1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损 1.调焊丝伸出长度2.调整矫正机构3.更新导电 co2气保焊的使用近况 co2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用。尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,co2气体保护焊以其高生产率(比手工焊高1~3倍)、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一。但是据我们这几年的工作经历,co2气体保护焊在实际生产运用中还存在不少问题,综合如下: 一、气源的问题 我国现在还没有对焊接用co2气体纯度要求的国家标准,市场上出售的co2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷。比对国外多数国家规定,要求焊接用co2气体纯度不低于99.5%,有些国家甚至要求co2纯度高于99.8%,水分含量低于0.0066%,来作为获得优质焊缝的前提条件。 二、焊接参数选择的问题 一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制。在施焊操作上,一个熟练的手工电弧焊焊工对掌握co2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国co2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能。只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透。要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍(一般在10~20mm范围内),焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等。在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小。 第15篇 二氧化碳气体焊机安全技术操作规程 上岗要求 一、操作人员是必须持有《焊工操作证》。 二、操作人员必须熟悉焊机的基本性能及技术要求。 三、操作人员必须忠于职守,认真负责,熟练掌握本设备的操作、维护及保养方法。 四、操作人员必须不断努力学习,总结交流经验,以求得自身素质的不断提高。 开机前检查 一、确认电源及线路是否正确、完好。 二、确认焊机地线、焊接电缆、焊钳和焊件的连线是否正确,外壳保护性接地是否接触良好。二氧化碳气体保护焊的气瓶压力是否符合焊接的要求值(不低于1mpa),输气管是否有漏气现象;需冷却水的是否有足够的冷却水,管路是否通畅。 焊接准备 一、在狭窄场所进行焊接时,务必在检查人员的监督下进行焊接,并注意充分换气或使用呼吸保护用具。 二、请勿在脱脂、清洗、喷雾作业区内进行焊接操作。 三、焊接带有镀层或涂层的钢板时,会产生有害烟尘和气体,请使用呼吸保护用具。 四、进行焊接或监督焊接时,请使用具有足够遮光度的保护用具。 五、请着用焊接用皮制保护手套、长袖服装、护脚、围裙等保护用具。 六、在焊接场所周围设备保护屏障,防止弧光危及他人。 七、噪音大时,请使用隔音器具。 八、请勿将手指、头发、衣服等靠近送丝机的送丝轮等旋转部位。 九、高压气体喷出会引发人身事故,故勿请在打开气体钢瓶阀门时将脸部靠近出气口。 十、点动送丝时请勿将焊枪的端部接近棉布、眼睛、身体。否则焊丝会突然快速伸出刺入面部、眼睛、身体中造成伤害;手指、头发、衣服等切勿靠近旋转中的送丝轮,否则会被卷入造成伤害。 安全操作 一、打开主电源,将焊接电流电压调至所需工作档位,接通保护气,先试焊一下,观察焊接参数是否符合规范要求,然后调整之。 二、操作人员焊接作业时应集中精力,佩戴好防护用具,保证自身安全;高空作业时,首先确认脚下是否稳当,应佩带并拴好安全带。 三、焊接作业时确认工作区域是否有易燃易爆物品,有应远离或将其搬开远离之;由于焊接飞溅,会影响周围的物品的外观及功能,所以应确认是否要保护;并且提醒周边的人员注意。 四、严禁焊接时更换焊接规范,改变技术参数,以免造成设备损坏。 操作要求 一、焊接作业前应认真阅读图纸及技术资料,复杂焊件需先弄清焊接次序及装配次序后才能开始。 二、加固焊前先点固位置,保证形状后才能加固焊牢,如易变形或有尺寸位置要求的需合理使用工装胎具。 三、首件必须经自检合格或由专门品质人员检验合格后方可进入批量作业。 四、爱惜设备及工具,设备出现异常现象应及时反映给车间主任,严禁继续开机和私自拆修设备。 设备保养 日保养 一、每月需检查各种电线是否完好,否则更换之。 二、清洁设备,清除焊渣,清理工作现场及周边环境。 =相关制度=
=安全管理= 气体技术规程15篇
内容一、气体技术概述气体技术涉及气体的生产、处理、储存、运输和应用等多个环节,对于保障工业生产、科研实验及环境保护等方面起着至关重要的作用。本规程旨在规范气体技术
推荐度:
相关气体信息
上一篇:热水锅炉安全技术规程3篇
下一篇:成型技术规程7篇
|