欢迎光临管理范文网
当前位置: > 总结大全 > 教学总结

初中数学的运算知识点总结(四篇)

发布时间:2024-02-14 13:12:02 查看人数:32

初中数学的运算知识点总结

第1篇 初中数学的运算知识点总结 800字

初中数学集合的运算知识点总结

集合的运算也遵循一般的代数式运算规律,也有着自己的法则和定理。

集合的运算

1.子集

定义:设有集合a、b,若有x∈a,必有x∈b,那么称a是b的子集。记作a∈b,读作b包含a。

定义:若两集合a、b满足a∈b且b∈a,称a与b相等,记作a=b。

定义:若两集合a、b满足a∈b且a≠b,称a是b的真子集,记作a真包含于b

·注意区别属于关系(元素与集合)和包含关系(集合与集合)。

·任何集合都是其本身的子集

·空集是任何集合的子集且是任何非空集的真子集

·空集是唯一的

·若有集合a、b、c,满足c(真)包含b,b(真)包含a,则必有c(真)包含a。注意若x∈a,a∈b,未必有x∈b。

2.幂集

定义:设有集合a,由集合a所有子集组成的'集合,称为集合a的幂集。

定理:有限集a的幂集的基数等于2的有限集a的基数次方。

3.并、交与补集

并集定义:由所有属于集合a或属于集合b的元素所组成的集合,记作a∪b(或b∪a),读作“a并b”(或“b并a”),即a∪b={x|x∈a,或x∈b}。并集越并越多。

交集定义:由属于a且属于b的元素组成的集合,记作a∩b(或b∩a),读作“a交b”(或“b交a”),即a∩b={x|x∈a,且x∈b}。j交集越交越少。

补集定义:由属于a而不属于b的元素组成的集合,称为b关于a的相对补集,记作a-b,即a-b={x|x∈a,x∈b'}

绝对补集定义:a关于全集合u的相对补集称作a的绝对补集,记作a'或cu(a)或~a。·u'=φ;φ‘=u

·若a包含于b,则a∩b=a,a∪b=b

4.集合的运算定律

交换律:a∩b=b∩a

a∪b=b∪a

结合律:a∪(b∪c)=(a∪b)∪c

a∩(b∩c)=(a∩b)∩c

分配对偶律:a∩(b∪c)=(a∩b)∪(a∩c)

a∪(b∩c)=(a∪b)∩(a∪c)

对偶律:(a∪b)^c=a^c∩b^c

(a∩b)^c=a^c∪b^c

同一律:a∪φ=a

a∩u=a

求补律:a∪a'=u

a∩a'=φ

对合律:(a')'=a

等幂律:a∪a=a

a∩a=a

零一律:a∪u=u

a∩u=a

吸收律:a∪(a∩b)=a

a∩(a∪b)=a

德·摩根定律(反演律):(a∪b)'=a'∩b'

(a∩b)'=a'∪b'

容斥原理(特殊情况):card(a∪b)=card(a)+card(b)-card(a∩b)

card(a∪b∪c)=card(a)+card(b)+card(c)-card(a∩b)-card(b∩c)-card(c∩a)+card(a∩b∩c)

上例的知识要点很多,运用在考试中的知识也有很多,这就需要同学们自己加强记忆了。

第2篇 初中数学分时运算知识点总结 1100字

初中数学分时运算知识点总结

一、约分与通分:

1.约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分;

分式约分:将分子、分母中的公因式约去,叫做分式的约分。分式约分的根据是分式的基本性质,即分式的分子、分母都除以同一个不等于零的整式,分式的值不变。

约分的方法和步骤包括:

(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公约数的积;

(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

2.通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。

分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的最高次幂的所有不同字母的积;

(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

(3)通分后的各分式的分母相同,通分后的`各分式分别与原来的分式相等;

(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。

注意:

(1)分式的约分和通分都是依据分式的基本性质;

(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

(3)约分时,分子与分母不是乘积形式,不能约分.

3.求最简公分母的方法是:

(1)将各个分母分解因式;

(2)找各分母系数的最小公倍数;

(3)找出各分母中不同的因式,相同因式中取次数最高的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

二、分式的运算:

1.分式的加减法法则:

(1)同分母的分式相加减,分母不变,把分子相加;

(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。

2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

4.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。

5.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。

常见考法

分式的运算通常是综合考查分式的加减、乘除、约分及分解因式等知识,是中考的重点。特别是化简求值已经成近两年中考的热点。题型既有选择、填空题,也有计算题。

误区提醒

(1)互为相反数的因式约分时漏掉负号;

(2)通分时漏乘而出错;

(3)把通分与去分母混淆,本是通分,却把分式中的分母丢掉;

(4)计算顺序搞乱而出错。

第3篇 初中数学整式运算知识点的总结 450字

初中数学《整式运算》知识点的总结

1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的.系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:

5.整式的乘法:

1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法

1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

第4篇 中考备考2023:初中数学整式运算知识点总结 550字

1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:

5.整式的乘法:

1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法

1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解——把一个多项式化成几个整式的积的形式

1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

2)公式法:a.平方差公式;b.完全平方公式

初中数学的运算知识点总结(四篇)

初中数学集合的运算知识点总结集合的运算也遵循一般的代数式运算规律,也有着自己的法则和定理。集合的运算1.子集定义:设有集合a、b,若有x∈a,必有x∈b,那么称a是b的子集。记作a∈b,读作b包含a。定义:若两集合a、b满足a∈b且b∈a,称a与b相等,记作a=b。定义:若两集合a、b满足a∈b且a≠b,称a是b的真子集,记作a真包含
推荐度:
点击下载文档文档为doc格式

相关运算知识点信息

  • 初中数学的运算知识点总结(四篇)
  • 初中数学的运算知识点总结(四篇)32人关注

    初中数学集合的运算知识点总结集合的运算也遵循一般的代数式运算规律,也有着自己的法则和定理。集合的运算1.子集定义:设有集合a、b,若有x∈a,必有x∈b,那么称a是b的子 ...[更多]