- 目录
第1篇 八年级数学知识点总结北师大版
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量_与y,如果对于_的每一个值,y都有确定的值与它对应,那么就说_是自变量,y是_的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量_的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
第2篇 新人教版八年级数学知识点总结
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
第3篇 数据的描述八年级数学知识点总结
数据的描述八年级数学知识点总结
数据的描述
我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的`比为频率。
常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。
条形图:描述各组数据的个数。
复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。
扇形图:描述各组频数的大小在总数中所占的百分比。
折线图:描述数据的变化趋势。
直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。
在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。
求出各个小组两个端点的平均数,这些平均数称为组中值。