欢迎光临管理者范文网
当前位置:管理者范文网 > 范文大全 > 工作总结 > 教学工作总结

八年级上册数学总结(优选16篇)

更新时间:2024-11-20 查看人数:46

八年级上册数学总结

第1篇 八年级上册数学算术平方根知识点总结

八年级上册数学算术平方根知识点总结

算术平方根的双重非负性

1.a中a≧0

2.a≧0

算术平方根产生 根号(即算术平方根)的产生源于正方形的对角线长度根号二,这个 根号二的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

对于这个无理数根号二,最终人们选取了用根号来表示

算术平方根举例

9的平方根为9的算术平方根为3,正数的平方根都是前面加,算术平方根全部都是正数。

算术平方根辨析

算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对孪生杀手,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

一、 两者区别

1、定义不同:⑴一般地,如果一个正数_的'平方等于a,即_2=a,那么这个正数_叫做a的算术平方根(arithmetic square root)。⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说,如果_2=a,那么_叫做a的平方根。

2、表示方法不同:⑴a的算术平方根记为a ,读作根号a,a叫做被开方数(radicand)。⑵a的平方根记为a,读作正负根号a,其中a叫做被开方数。

3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根

二、 两者联系

1、前提条件相同:算术平方根和平方根存在的前提条件都是只有非负数才有算术平方根和平方根。

2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

3、0的算术平方根和平方根相同,都是0。

第2篇 八年级上册数学第五单元知识点总结

八年级上册数学第五单元知识点总结

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的`绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

第3篇 新人教版八年级上册数学教学工作总结

一、加强师德修养,提高道德素质

过去的一个学期中,我认真加强师德修养,提高道德素质。认真学习《义务教育法》、《教师法》、《中小学教师职业道德规范》等教育法律法规;严格按照有事业心、有责任心、有上进心、爱校、爱岗、爱生、团结协作、乐于奉献、勇于探索、积极进取的要求去规范自己的行为。对待学生做到:民主平等,公正合理,严格要求,耐心教导;对待同事做到:团结协作、互相尊重、友好相处;对待家长做到:主动协调,积极沟通;对待自己做到:严于律已、以身作则、为人师表。

二、加强教育教学理论学习

本学期我担任八年级数学的教学。我能积极投入到课改的实践探索中,认真学习、贯彻新课标,加快教育、教学方法的研究,更新教育观念,掌握教学改革的方式方法,提高了驾驭课程的能力。树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点。

三、教学工作

在教学中,我大胆探索适合于学生发展的教学方法。为了教学质量,我做了下面的工作:

1、 认真学习课标。

通过学习新的《课程标准》,使自己逐步领会到“一切为了人的发展”的教学理念。承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果 .

2、认真备好课。

①认真学习贯彻新课标,钻研教材。了解教材的基本思想、基本概念、结构、重点与难点,掌握知识的逻辑。多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。

②了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的措施。

③考虑教法,解决如何把已掌握的教材传授给学生,包括如何组织教学、如何安排每节课的活动。

3、坚持坚持学生为主体,向45分钟课堂教学要质量。

精心组织好课堂教学,关注全体学生,坚持学生为主体,注意信息反馈,调动学生的注意力,使其保持相对稳定性。同时,激发学生的情感,针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,注重讲练结合。在教学中注意抓住重点, 突破难点。首先加强对学生学法的指导,引导学生学会学习。提高学生自学能力;给学生提供合作学习的氛围,在学生自学的基础上,组成4人的学习小组,使学生在合作学习的氛围中,提高发现错误和纠正错误的能力;为学生提供机会,培养他们的创新能力。其次加强教法研究,提高教学质量。我在教学中着重采取了问题--讨论式教学法,通过以下几个环节进行操作:指导读书方法,培养问题意识;创设探究环境,全员质凝研讨;补充遗缺遗漏,归纳知识要点。

4、认真批改作业。在作业批改上,做到认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在讲评作业时做到有的放矢,使学生能及时认识并纠正作业中的错误。

四、工作中存在的问题

1 、教材挖掘不深入。

2 、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3 、新课标下新的教学思想学习不深入。对学生的自主学习 , 合作学习 , 缺乏理论指导 .

4 、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

5 、教学反思不够。

五、今后努力的方向

1 、加强学习,学习新课标下新的教学思想。

2 、学习新课标,挖掘教材,进一步把握知识点和考点。

3 、多听课,学习同科目教师先进的教学方法的教学理念。

4 、加强转差培优力度。

第4篇 八年级上册数学教学工作总结

八年级上册数学教学工作总结

转眼的时间,我在教师的岗位上又走过了一年。追忆往昔,展望未来,为了更好的总结经验教训使自己迅速成长,成为一名合格的“人民教师”,无愧于这一称号,我现将工作情况总结如下:

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师

的立身之本。“学高为师,身正为范”,这个道理古今皆然。,为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平,力争做一个有崇高师德的人。

二、教学方面:虚心求教,强化自我

担任跨年级初二和初三的两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。为了充实自己,使自己教学水平有一个质的飞跃,为了不辜负领导的信任和同学的希望,我决心尽我最大所能去提高自身水平,争取较出色的完成教学。

为此,我一方面下苦功完善自身知识体系,打牢基础知识,使自己能够比较自如的进行教学;另一方面,继续向老教师学习,抽出业余时间具有丰富教学经验的老师学习。对待课程,虚心听取他们意见备好每一节课;仔细听课,认真学习他们上课的安排和技巧。这一年来,通过认真学习教学理论,刻苦钻研教学,虚心向老教师学习,我自己感到在教学方面有了较大的提高。学

生的成绩也证实了这一点,我教的班级在历次考试当中都取的了较好的成绩,。接手这两个班的教学,我更是一点不敢放松,每备一节课我都向老教师年轻教师虚心的求教力争尽善尽美。

三、考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

四、业务进修方面

随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。

总之,在这一年我担任的两个班级的数学教学工作取得了一定的成绩,我将继续努力,取得更优异的教学成绩,为学校争光!

八年级上册数学教学工作总结,已全部结束,感谢你的阅读。

第5篇 八年级上册数学的知识点总结

八年级上册数学的知识点总结

鉴于数学知识点的重要性,小编为您提供了这篇八年级上册数学知识点总结,希望对同学们的数学有所帮助。

24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的三角形是等边三角形

26推论2有一个角等于60°的等腰三角形是等边三角形

27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角三角形斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的'点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

31线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

32定理1关于某条直线对称的两个图形是全等形

33定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

34定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

这篇八年级上册数学知识点总结是小编精心为同学们准备的,祝大家学习愉快!

第6篇 八年级上册数学第六章平均数中位数众数知识点总结

北师大版八年级上册数学第六章平均数中位数众数知识点总结

一、平均数、中位数、众数的概念

1.平均数

平均数是指在一组数据中所有数据之和再除以数据的个数。

2.中位数

中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数。

3.众数

众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。

二、平均数、中位数、众数的区别

1.平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。

2.总数着眼于对各数据出现频率的`考察,其大小只与这组数据的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。

3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中个别数据变动较大时,可用中位数来描述其中集中的趋势。

三、平均数、中位数、众数的联系

众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。

只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。由数学网为您提供的北师大版八年级上册数学第六章知识点复习:平均数、中位数、众数,祝您学习愉快!

第7篇 八年级上册数学等腰三角形知识点总结必看

八年级上册数学等腰三角形知识点总结必看

八年级上册数学等腰三角形知识点

一、等腰三角形知识点

1.等腰三角形的性质

1.等腰三角形的两个底角相等(简写成“等边对等角”)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的.一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

二、等腰三角形的判定:

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边):等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

这以上是小编为大家提供的八年级上册数学等腰三角形知识点总结。

第8篇 2023八年级上册数学知识点归纳总结

1 全等三角形的对应边、对应角相等

2边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

4 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(sss) 有三边对应相等的两个三角形全等

6 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的集合

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23 推论3 等边三角形的各角都相等,并且每一个角都等于60°

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25 推论1 三个角都相等的三角形是等边三角形

26 推论 2 有一个角等于60°的等腰三角形是等边三角形

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28 直角三角形斜边上的中线等于斜边上的一半

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

32 定理1 关于某条直线对称的两个图形是全等形

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

38定理 四边形的内角和等于360°

39四边形的外角和等于360°

40多边形内角和定理 n边形的内角的和等于(n-2)×180°

41推论 任意多边的外角和等于360°

42平行四边形性质定理1 平行四边形的对角相等

43平行四边形性质定理2 平行四边形的对边相等

44推论 夹在两条平行线间的平行线段相等

45平行四边形性质定理3 平行四边形的对角线互相平分

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

91圆是定点的距离等于定长的点的集合

92圆的内部可以看作是圆心的距离小于半径的点的集合

93圆的外部可以看作是圆心的距离大于半径的点的集合

94同圆或等圆的半径相等

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

97到已知角的两边距离相等的点的轨迹,是这个角的平分线

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

99定理 不在同一直线上的三点确定一个圆。

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

102推论2 圆的两条平行弦所夹的弧相等

103圆是以圆心为对称中心的中心对称图形

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

106定理 一条弧所对的圆周角等于它所对的圆心角的一半

第9篇 人教版八年级上册数学知识点总结201+

第十三章 轴对称

一、轴对称图形

1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

3、轴对称图形和轴对称的区别与联系

4.轴对称的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等

3.与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

在平面直角坐标系中,关于_轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

四、(等腰三角形)知识点回顾

1.等腰三角形的性质

①.等腰三角形的两个底角相等。(等边对等角)

②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

2、等腰三角形的判定:

如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边三角形)知识点回顾

1.等边三角形的性质:

等边三角形的三个角都相等,并且每一个角都等于600 。

2、等边三角形的判定:

①三个角都相等的三角形是等边三角形。

②有一个角是600的等腰三角形是等边三角形。

3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则

④等腰三角形的三角关系:设顶角为顶角为∠a,底角为∠b、∠c,则∠a=180°—2∠b,∠b=∠c=

2、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

等腰三角形的性质与判定

等腰三角形性质

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

等边对等角

等角对等边

底的一半<腰长<周长的一半

两边相等的三角形是等腰三角形

4、三角形中的中位线

连接三角形两边中点的线段叫做三角形的中位线。

(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。

(2)要会区别三角形中线与中位线。

三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

三角形中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个三角形都有三条中位线,由此有:

结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

结论2:三条中位线将原三角形分割成四个全等的三角形。

结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

结论4:三角形一条中线和与它相交的中位线互相平分。

结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

第十四章 整式乘除与因式分解

一.回顾知识点

1、主要知识回顾:

幂的运算性质:

am·an=am+n (m、n为正整数)

同底数幂相乘,底数不变,指数相加.

= amn (m、n为正整数)

幂的乘方,底数不变,指数相乘.

(n为正整数)

积的乘方等于各因式乘方的积.

= am-n (a≠0,m、n都是正整数,且m>n)

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

a0=1 (a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

a-p= (a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.

也可表示为:(m≠0,n≠0,p为正整数)

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.

单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

二、熟练掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

①平方差公式: a2-b2= (a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

第十五章 分式

知识点一:分式的定义

一般地,如果a,b表示两个整数,并且b中含有字母,那么式子叫做分式,a为分子,b为分母。

知识点二:与分式有关的条件

①分式有意义:分母不为0

②分式无意义:分母为0

③分式值为0:分子为0且分母不为0

④分式值为正或大于0:分子分母同号(或)

⑤分式值为负或小于0:分子分母异号(或)

⑥分式值为1:分子分母值相等(a=b)

⑦分式值为-1:分子分母值互为相反数(a+b=0)

知识点三:分式的基本性质

分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中a、b、c是整式,c0。

拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即

注意:在应用分式的基本性质时,要注意c0这个限制条件和隐含条件b0。

知识点四:分式的约分

定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的公因。

注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

知识点四:最简分式的定义

一个分式的分子与分母没有公因式时,叫做最简分式。

知识点五:分式的通分

① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

② 分式的通分最主要的步骤是最简公分母的确定。

最简公分母的定义:取各分母所有因式的次幂的积作公分母,这样的公分母叫做最简公分母。

确定最简公分母的一般步骤:

ⅰ 取各分母系数的最小公倍数;

ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;

ⅲ 相同字母(或含有字母的式子)的幂的因式取指数的。

ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。

注意:分式的分母为多项式时,一般应先因式分解。

知识点六分式的四则运算与分式的乘方

① 分式的乘除法法则:

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:

分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为

② 分式的乘方:把分子、分母分别乘方。式子

③ 分式的加减法则:

同分母分式加减法:分母不变,把分子相加减。式子表示为

异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为

整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

④ 分式的加、减、乘、除、乘方的混合运算的运算顺序

先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。

注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。

加减后得出的结果一定要化成最简分式(或整式)。

知识点六整数指数幂

① 引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即

科学记数法

若一个数_是0的数,则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。如0.000000125=

若一个数_是_>10的数则可以表示为(,即a的整数部分只有一位,n为整数)的形式,n的确定n=比整数部分的数位的个数少1。如120 000 000=

知识点七分式方程的解的步骤

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

知识点八列分式方程

基本步骤

① 审—仔细审题,找出等量关系。

② 设—合理设未知数。

③ 列—根据等量关系列出方程(组)。

④ 解—解出方程(组)。注意检验

⑤ 答—答题。

第10篇 2023八年级上册数学知识点总结

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等

65等腰梯形的两条对角线相等

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

67对角线相等的梯形是等腰梯形

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h

第11篇 八年级上册数学重点多边形及其内角和知识点总结

八年级上册数学重点多边形及其内角和知识点总结

初中频道为您整理了八年级上册数学重点多边形及其内角和知识点总结,希望帮助您提供多想法。和小编一起期待学期的学习吧,加油哦!

1、多边形的定义

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.

(1)多边形的一些要素:

边:组成多边形的各条线段叫做多边形的边.

顶点:每相邻两条边的公共端点叫做多边形的顶点.

内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。

外角:多边形的'边与它的邻边的延长线组成的角叫做多边形的外角。

(2)在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间

多边形

2、多边形的分类:

(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形.

以上就是为大家整理的八年级上册数学重点多边形及其内角和知识点总结,大家还满意吗?希望对大家有所帮助!

第12篇 苏科版八年级上册数学知识点归纳总结

1 全等三角形的对应边、对应角相等

2边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

4 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(sss) 有三边对应相等的两个三角形全等

6 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的集合

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

23 推论3 等边三角形的各角都相等,并且每一个角都等于60°

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

25 推论1 三个角都相等的三角形是等边三角形

26 推论 2 有一个角等于60°的等腰三角形是等边三角形

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28 直角三角形斜边上的中线等于斜边上的一半

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

32 定理1 关于某条直线对称的两个图形是全等形

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

38定理 四边形的内角和等于360°

39四边形的外角和等于360°

40多边形内角和定理 n边形的内角的和等于(n-2)×180°

41推论 任意多边的外角和等于360°

42平行四边形性质定理1 平行四边形的对角相等

43平行四边形性质定理2 平行四边形的对边相等

44推论 夹在两条平行线间的平行线段相等

45平行四边形性质定理3 平行四边形的对角线互相平分

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

第13篇 八年级上册数学第三章方向与位置复习知识点总结

八年级上册数学第三章方向与位置复习知识点总结

确定位置(一)(用数对确定位置)

知识点

1、数对的表示方法:先表示横的方向,后表示纵的.方向,即根据直角坐标系,确定某一点的坐标(_,y).

2、数对的写法:先横向观察,在第几位就在小括号里先写几,再点上逗号;然后再纵向观察,在第几位,就在小括号里面写上几。如小青的位置在第三组,第二个座位,用数对表示为(3,2)。

3、能根据数对说出相应的实际位置。如某个同学在(5,6)这个位置。他的实际位置是,班级中(从左往右数)第五组第六个座位。

确定位置(二)(根据方向和距离确定位置)

知识点:

1、认识方向:东、南、西、北、东南、东北、西南、西北。

2、根据方向和距离确定物体位置的方法:(1)以某一点为观测中心,标出方向,上北、下南、左西、右东;将观测点与物体所在的位置连线;用量角器测量角度,最后得出结论在哪个方向上。(2)用直尺测量两点之间的图上距离。

补充知识点:认识并初步了解比例尺:如1:5000 单位:千米 就表示图上1厘米等于实际距离5000千米。

第14篇 八年级上册数学公式法总结

导语部分学生对学习不感兴趣,普遍认为学习中的公式掌握不好,下面是为您整理的八年级上册数学公式法总结,仅供大家学习参考。

二次函数抛物线顶点式&顶点坐标

顶点式:y=a(_-h)^2+k(a≠0,k为常数,_≠h)

顶点坐标公式顶点坐标:(-b/2a),(4ac-b^2)/4a)

二次函数y=a_2;,y=a(_-h)2;,y=a(_-h)2;+k,y=a_2;+b_+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

解析式

y=a_2

y=a(_-h)2

y=a(_-h)2+k

y=a_2+b_+c

顶点坐标

[0,0]

[h,0]

[h,k]

[-b/2a,(4ac-b2)/4a]

对称轴

_=0

_=h

_=h

_=-b/2a

当h>0时,y=a(_-h)2的图象可由抛物线y=a_2;向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=a_2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)2+k的图象;

当h>0,k<0时,将抛物线y=a_2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)2+k的图象;

因此,研究抛物线y=a_2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=a_2+b_+c(a≠0)的图象:当a>0时,开口向上'当a<0时,开口向下,对称轴是直线_=-b/2a,顶点坐标是[-b/2a,(4ac-b2)/4a]

3.抛物线y=a_2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.4.抛物线y=a_2+b_+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b2-4ac>0,图象与_轴交于两点a(_1,0)和b(_2,0),其中的_1,_2是一元二次方程a_2+b_+c=0

(a≠0)的两根.这两点间的距离ab=|_2-_1|=.

当△=0.图象与_轴只有一个交点;

当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

5.抛物线y=a_2+b_+c的最值:如果a>0(a<0),则当_=时,y最小(大)值=.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

y=a_2+b_+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)2+k(a≠0).

(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_₁)(_-_2)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

第15篇 八年级上册数学全等三角形知识点的总结

八年级上册数学全等三角形知识点的总结

定义

能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:1的特殊情况)

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

表示:全等用“≌”表示,读作“全等于”。

判定公理

1、三组对应边分别相等的两个三角形全等(简称sss或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(sas或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(asa或“角边角”)。

由3可推到

4、有两角及其一角的对边对应相等的两个三角形全等(aas或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(hl或“斜边,直角边”) 所以,sss,sas,asa,aas,hl均为判定三角形全等的定理。

注意:在全等的判定中,没有aaa角角角和ssa(特例:直角三角形为hl,属于ssa)边边角,这两种情况都不能唯一确定三角形的形状。 a是英文角的缩写(angle),s是英文边的缩写(side)。

h是英文斜边的缩写(hypotenuse),l是英文直角边的缩写(leg)。

6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

性质

三角形全等的条件:

1、全等三角形的对应角相等。

2、全等三角形的对应边相等

3、全等三角形的对应顶点相等。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角平分线相等。

6、全等三角形的对应中线相等。

7、全等三角形面积相等。

8、全等三角形周长相等。

9、全等三角形可以完全重合。

三角形全等的方法:

1、三边对应相等的两个三角形全等。(sss)

2、两边和它们的夹角对应相等的.两个三角形全等。(sas)

3、两角和它们的夹边对应相等的两个三角形全等。(asa)

4、有两角及其一角的对边对应相等的两个三角形全等(aas)

5、斜边和一条直角边对应相等的两个直角三角形全等。(hl)

推论

要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定,是由三个对应的部分组成,即全等三角形可透过以下定义来判定:

s.s.s. (side-side-side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。

s.a.s. (side-angle-side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。

a.s.a. (angle-side-angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。

a.a.s. (angle-angle-side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。

r.h.s. / h.l. (right angle-hypotenuse-side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。

但并非运用任何三个相等的部分便能判定三角形是否全等。以以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:

a.a.a. (angle-angle-angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。

a.s.s. (angle-side-side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以r.h.s.来判定。

1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用sas找全等三角形。

4、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。

5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。

第16篇 八年级上册数学知识点总结2023

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

38定理 四边形的内角和等于360°

39四边形的外角和等于360°

40多边形内角和定理 n边形的内角的和等于(n-2)×180°

41推论 任意多边的外角和等于360°

42平行四边形性质定理1 平行四边形的对角相等

43平行四边形性质定理2 平行四边形的对边相等

44推论 夹在两条平行线间的平行线段相等

45平行四边形性质定理3 平行四边形的对角线互相平分

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

八年级上册数学总结(优选16篇)

第十三章轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个…
推荐度:
点击下载文档文档为doc格式

相关八年级上册数学信息

  • 八年级上册数学总结(优选16篇)
  • 八年级上册数学总结(优选16篇)46人关注

    第十三章轴对称一、轴对称图形1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也 ...[更多]

相关专题

教学工作总结热门信息