- 目录
第1篇 小学六年级数学知识点的总结
关于小学六年级数学知识点的总结
1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则:
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。
3.分数乘法意义
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归
5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数
找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数
找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的`分母做分子。则是1/12,12是1/12的倒数。
8.小数的倒数:
普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/1
9.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。表示两个比相等的式子叫做比例,是比的意义。比例有4项,前项后项各2个.
15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
第2篇 小学六年级数学知识点总结
小学六年级数学知识点总结_数和数的运算
第一章 数和数的运算
二 方法
三 性质和规律
五 应用
3典型应用题
(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)
(二)分数和百分数的应用
1 分数加减法应用题:
分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:
是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的'量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3 分数除法应用题:
求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。
已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成_根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。
4 出勤率
发芽率=发芽种子数/试验种子数×100%
小麦的出粉率= 面粉的重量/小麦的重量×100%
产品的合格率=合格的产品数/产品总数×100%
职工的出勤率=实际出勤人数/应出勤人数×100%
5 工程问题:
是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
数量关系式:
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
工作总量÷工作效率和=合作时间
6 纳税
纳税就是把根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税款。
应纳税额与各种收入的(销售额、营业额、应纳税所得额 ……)的比率叫做税率。
_ 利息
存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间
第3篇 六年级数学知识点的总结
六年级数学知识点的总结
人教版六年级上册数学知识点汇总
1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。
第二单元分数乘法
1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。
2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
(为了计算简便,能约分的要先约分,然后再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3.一个数与分数相乘,可作是求这个数的几分之几是多少。
4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
(为了计算简便,可以先约分再乘。)
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c
6.乘积是1的两个数互为倒数。
7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。
8.一个数(0除外)乘以一个真分数,所得的积小于它本身。
9.一个数(0除外)乘以一个假分数,所得的.积等于或大于它本身。
10.一个数(0除外)乘以一个带分数,所得的积大于它本身。
11.分数应用题一般解题步骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面
(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。
(4)根据线段图写出等量关系式:标准量×对应分率=比较量。求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×
第4篇 北师大版六年级数学知识点总结:圆
1.圆的圆心一般用字母o表示。它到圆上任意一点的连线都相等(这个线段是半径).
2.连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
3.圆心确定圆的位置,半径确定圆的大小。
4.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
5.在同一个圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。
6.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
7.圆的周长:围成圆的曲线的长度叫做圆的周长。圆所占面积的大小叫圆的面积。
8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母π表示。圆周率是一个无限不循环小数。在计算时,取π=3.14(π不等于3.14)。世界上第一个把圆周率算到七位小数的人是我国的数学家祖冲之。
9. 计算圆的周长或面积时一般都要先求出半径或直径
圆的周长公式:c=πd 或c=2πr 圆周长=π×直径 圆周长=π×半径×2
圆的面积公式:s=πr² 或者s=π(dπ2)²
10.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。圆的面积公式:s=πr²。
11.在一个正方形里画一个的圆,圆的直径等于正方形的边长。
在一个长方形里画一个的圆,圆的直径等于长方形的宽。
12.一个环形,外圆的半径是r,内圆的半径是r,它的面积两个圆的面积差,即s=πr²-πr² 或 s=π(r²-r²)。 (注意其中路宽是两圆的半径差)
13.半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。
14.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
15.两个圆的半径比、直径比、周长比相同,而面积比等于以上比的平方。
16.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
17.当长方形,正方形,圆的周长相等时,圆的面积
18.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
圆的对称轴是直径所在的直线(或叫过圆心的直线)