篇一 过程装备与控制工程专业生产实习报告6850字
生产实习报告
专业:过程装备与控制工程
实习地点:____精细化工厂
指导教师:__ 、__
撰写时间:XX年9月15日
一、 前言.. - 2 -
二、 实习要求及目的 . ……………………………………………………………………….- 2 -
三、 化工实训基地简介.. - 2 -
(一)、化工实训基地建设历程简介.. - 2 -
(二)、实训教学.. -3-
四、均苯四甲酸二酐装置介绍.. - 3 -
(一)、产品的性质、用途.. - 4 -
1、pmda的性质.. - 4-
2、pmda的用途.. -4 -
(二)均酐的原料及生产过程简介.. -5 -
1、原料.. -5 -
2、生产过程简介.. -5 -
(三)、工艺原理.. - 5-
1、工艺概况.. - 6 -
2、主要设备构造、原理和作用.. - 6 -
3、各工序反应机理.. - 7 -
4、各工段的工艺流程.. - 8-
5 、主要工艺参数.. - 9 -
五、实习体会.. - 9 -
一、前言
XX年8月23日,在老师的带领下,我们来到____精细化工厂开始了为期二周的生产实习。虽然只有短暂的两个星期,但在带队老师和工人师傅的细心介绍和耐心指导下,我感觉受益匪浅。对于生产实践能力要求很高的过程装备与控制工程专业,去工厂认识实习与生产实习是我们的专业课学习过程中必不可少的部分,我们工科学生的生产实习是理论联系实际、培养高级工程技术人才、为后续专业课学习打下感性认识基础的非常重要的实践环节。在工厂的“身临其境”让我们褪去了书本的束缚,真正的把理论联系到实际,在机械的轰鸣声中,在空气中弥漫的淡淡均苯四甲酸二酐味道里,在看到工厂的工人师傅认真生产,一丝不苟的表情时,我们队“过程装备与控制工程专业”有了更多的理解和体会。通过对化工厂工艺流程和主要化工设备的实习,了解化工生产的概况和主要机械设备的作用和主要结构,为后续的专业课学习增强感性认识,提高了我们运用所学知识观察和分析实际问题的能力。
二、 实习要求及目的
XX年08月22日,上午,管理工厂的老师为我们进行了简单的安全教育,介绍了工厂劳动保护、安全技术、放火、防爆、防毒以及保密等内容的安全生产教育规范行为。
XX年08月22日至08月26日,实习地点是____精细化工厂。在这期间,每位老师就苯四甲酸二酐装置,介绍了机器和设备的类型、结构、作用原理,以及它们在生产流程的最用地位。介绍了均苯四甲酸均苯四甲酸二酐的工艺生产的方法和工艺流程,弄清主要工艺参数确定的理论依据。同时到现场参观了各个设备。
XX年08月29日至09月,1日,实习地点是__化工职业技术学院。在这期间,我们主要进行了管道的拆装,泵的拆装,压缩机的拆装,换热器的安装与检修。
XX年09月2日,实习地点是中国__石油化工机械制造厂,在这期间,我们在工厂的“身临其境”让我们褪去了书本的束缚,真正的把理论联系到实际,在机械的轰鸣声中,在指导老师的教导下,熟悉每个设备的制造过程
三、 化工实训基地简介
(一)、化工实训基地建设历程简介
XX年选址__大厂__镇__经济开发区,租地35亩正式进行基地建设。6月份已基本完成了勘探、测绘、围墙及马路建设。后因当地政府规划调整,使基地不得不另行选址建设。经过多次考察,于XX年底最终确定在__市六合区经济开发区虎跃路。买地38亩作为化工实训基地用地。XX年3月份及完成了勘探、测绘及围墙工作,随机开始打桩、基础、厂房及设备等一系列工作。XX年12月18日顺利投产。
化工实训基地占地38亩。计划分两期工程完成,第一期工程投资1100万元,占地20亩,主要用于化工单元操作,化工生产操作、dcs控制等人才培养以及化工应用技术开发和科研成果转化装置的建设,现已建成投产;第二期工程,预留用地18亩,拟投资1800万元,用于新建化工柔性生产工艺系统为核心,全真与计算机仿真结合,能提供化工单元操作、过程控制仿真、全工艺过程操作三种实训项目和相关配套设施,满足培养化工类专业和相关专业的工艺技术、计算机应用、自动控制、过程装备、分析检测等方面的岗位综合能力训练。在这种训练条件下,可以根据岗位的要求将时间教学课程体系分为若干个可灵活组合的模块,从而构成适应订单式教学的柔性课程体系。同时适度扩大现有生产装置及下游产品的开发和科研转化装置的建设与实训设备的完善。
(二)、实训教学
化工行业属于危险行业:高温、高压、易燃、易爆、有毒、有害,生产企业一般不愿接纳学生实训,即使勉强接纳,学生也只能看,不能动手训练,对提高学生职业技能帮助不大,要让学生真实动手操作实践是众多化工院校面临的共同难题。为了全力培养能适应生产第一线需要,与岗位零距离对接的高技能人才,学院筹建了自己的实训工厂,经过广泛调研论证,第一期选择了包含多个化工单元操作和多种典型生产设备的产品进行生产,可供化工类专业操作和仿真实训,机械类专业(化工制备维修专业)维修、拆装实训,自动化类专业仪表操作、维修实训,计算机类专业控制操作实训等,针对不同专业特点,进行模块化、组合式教学。
四、均苯四甲酸二酐装置介绍
(一)、产品的性质、用途
均四甲苯二酐,简称均酐(pmda),为白色或淡黄色结晶状物质,熔点:284~287
均四甲酸,英文简写为pma,是作为耐高温绝缘材料——聚酰亚胺的主要合成单体,广泛应用于航天、航空、机电和电子等领域,同时,也是重要的环氧树脂和聚酯树脂的固化剂及粉末涂料的助剂。
1、pmda的性质
(1)分子式c10h2o6
pyromellitic dianhydride(1,2,4,5—benzenetereacarbo_ylic dianhydride)
理化性质:均苯四甲酸二酐(pmda,简称均酐)分子式c10h2o6,分子量218.12,其外观为白色粉末或针状结晶,溶于丙酮、乙酸乙酯,不溶于乙醚、氯仿、石油及冷苏打溶液,遇水或置于湿空气中会变成均四甲酸,熔点287℃,沸点397~400℃,比重(20/4℃)1.680
2、pmda的用途
(1) 耐热化合物
均酐最大的用途就是用作聚酰亚胺的原料。由均酐与对二氨基二苯醚等芳香族二胺类化合物反应制得的聚酰亚胺。具有不溶不熔的特点,同其他塑料相比,有着非常优良的耐热性,电绝缘性、耐磨性、乃放射性。在工业上主要用途是制成薄膜用作h级或c级电机的电缆的耐热绝缘衬垫或绕包材料,或用作柔性电路板基材;也可以制成模塑料用于制原子反应堆和宇宙空间用的电料,以及在200~232℃下工作的喷气式发动机油管材料等。
(2) 增塑剂
由均酐和相应醇反应制得的均苯四甲酸四丁脂(topm和均苯四甲酸四辛酯(topm)),具有良好的电绝缘性和耐热性,可用于生产耐热高压电缆、耐热聚氯乙烯高级人造皮革,特别是医用塑料制品;均酐与2—基乙醇脂化制得均苯四甲酸四酯,是聚氯乙烯耐热绝热增塑剂,可用于生产102~120℃耐热电缆、生产特殊的耐久耐热塑料制品、医药及食品方面的聚氯乙烯制品。
(3) 环氧是指固化剂
用环氧树脂进行浇铸和压层制造电机材料特别是制造防漏电性电机材料时,均采用酸酐作固化剂。以均酐做固化剂不仅可以制成绝缘性能好的大型铸件,且耐热性可达200~250℃;用均酐作为环氧树脂胶粘型的固化剂,可以快速粘接,从而制得耐冲击性瞬时胶粘剂。
(二)均酐的原料及生产过程简介
1、原料
均酐生产的主要原料为均四甲苯和空气中的氧气,辅助原料为活性炭、硅胶。
(1)均四甲苯:白色结晶状物质,熔点:79.38℃,沸点:196.99℃。
指标
一级品
二级品
熔点(℃)
76 ~ 80
75 ~ 80
纯度(%)
≥97
≥95
状态
白色粉末结晶
白色粉末结晶
(2)活性炭:黑色微细粉末,无臭无味。
(3)硅胶:粗孔不规则硅胶(φ1 ~ 3)
(4)催化剂:v系催化剂。
2、生产过程简介
图1 工艺流程框图
本生产工艺的生产过程可用框图1表示。
(三)、工艺原理
1、工艺概况
生产过程分氧化、水解浓缩、脱水和升华四个工序。
a、氧化工序:固体的均四甲苯经加热熔化、汽化与热空气混合后,在固定床氧化反应器中,催化氧化生成均酐及副产物,经换热冷却在捕集器中凝华捕集得到均酐粗产品。
b、水解浓缩工序:粗的均酐产品在水解釜中加一定量的水和活性炭,加热水解后,经热过滤器除去活性炭,冷却结晶再经离心机甩干,得到均苯四酸粗产品,浓缩是将工艺废液经浓缩处理后,其水循环使用,废渣可焚烧处理。
c、脱水、升华工序:四酸粗产品在脱水釜中,在加热、真空条件下除去粗产品中的游离水和分子水生成粗酐,同时脱去低沸点副产物;脱水后的粗酐在其表面上加一定量的硅胶,在升华釜内加热和高真空的状态下使其升华重结晶,得到产品均苯四甲酸二酐。
本工艺氧化工序为连续生产,捕集器采用两套切换操作。一套捕集,一套出料备用。水解工序及脱水、升华工序为间歇操作。
2、主要设备构造、原理和作用
(1)汽化器
结构:汽化器主要由下列组件组成:锥形封头,栅板,填料,支座,分配器,支持圈,法兰连接组建、分布器,防爆口等零件组成。关口和构建见1—1。
工作原理:操作中间原料均四甲苯加入均四化料槽中,打开蒸汽进气阀及疏水器阀门,蒸汽加热融化均四甲苯,经均四液下泵,加入均四计量罐中。均四计量罐需同少量蒸汽保温至100+5℃。液态均四甲苯经均四过滤器过滤后由均四剂量泵定量地送入汽化混合器内。
作用:将液态的均四甲苯和空气混合,变成液态混合状的气体,混合均充匀后的气体有助于氧化反应。
(2)氧化反应器
结构:主要由下列零部件组成:平板封头,管箱,法兰,连接螺栓,密封垫,支座,波形膨胀节,换热管等组成。
工作原理:在汽化混合器中,均四甲苯与热空气均匀混合汽化后由氧化放映期化反应器为列管式固定床反应器,列关内均匀填装催化剂,管外由熔盐加热。熔盐在熔盐槽中由电热棒加热、控温,经熔盐液下泵进入反应器下部,经分配后进入管间,由反应器上部经熔盐冷却器管间返回熔盐槽在反应过程中始终保持熔盐循环。氧化反应产生的多余热量在熔盐冷却器中与空气换热降温后返回熔盐槽。
作用:均四甲苯与空气混合物在氧化反应管内催化剂的作用下,反应生成均酐及副产物及完全氧化产物二氧化碳和水。
(3)热管换热器
结构:由管箱、箱盖、热管、分布板和法兰等零部件组成。
原理:从换热器出来的均酐反应气再经热管换热器进一步降温后依次进入一、二、三、四捕集器,热管换热器冷却端为水,水被加热汽化后放空。、
作用:从换热器出来的均酐反应气的温度仍然比较难结晶,所以其作用是在降低均酐反应气的温度。
(4)第一捕集器
结构:捕集器由下列零部件组成,筒体,球形封头,管板,列管和支持环等组成。
原理:利用换热器的工作原理,管内通过均酐反应气,管外经过空气,通过管壁进行换热。进入捕集器的反应气体与壳体的空气换热降温后凝华生产固体粗产品,均酐反应气在捕集器中进一步冷却、逐步结晶,气态的均酐凝华变成了固态,结晶在捕集器的底部,随着温度的降低,均酐的量也就不同,越是向后结晶得量越来越少。
作用:结晶,是气态的均酐结晶成固态的粗酐。
3、各工序反应机理
(1)氧化工序:
均四甲苯与空气在一定温度下,在催化剂床层中催化氧化生成均酐及少量副产物,同时还有均四甲苯完全氧化为二氧化碳和水。整个反应机理较为复杂,现列出主副反应与完全燃烧反应方程式。
主反应:c10h14+6o2---6h2o+2140kj
副反应:c10h14+27/2o2---10co2+7h2o+5579kj
(2) 水解工序:粗的均酐与水灾一定温度下发生水解反应,生成均四酸。反应:c10h14+2h2o----c10h6o8
均苯四甲酸二酐装置所使用的催化剂一v2o5为基础,加入其它金属氧化物的多元组分的催化剂。
催化剂对均四氧化成均酐的影响
催化剂所用的载体通常是耐高温的氧化物。同时必须考虑其它因素,如载体是惰性还是活性、对催化物质和助催化剂的影响、表面积、毒性等
催化剂颗粒的形状和尺寸应该促进催化剂的活性,增强颗粒的抗压碎和康破裂性,降低床层阻力。降低生成费用等。
4、各工段的工艺流程
(1) 氧化工序
将原料均四甲苯加入均四化料槽中,打开蒸汽进气阀及疏水器阀门,蒸汽加热熔化均四甲苯,经均四液下泵加入均四计量罐。均四计量罐夹套需通少量蒸汽保温至90—100度。液态均四甲苯经均四过滤器后有均四计量泵定量地送入汽化混合器内。
原料空气经罗茨风机、空气款冲罐,经计量后再第三捕集器、第二捕集器、第一捕集器的管间与反应混合气体换热后,再经空气预热器、第二、第一换热器进一步换热后进入汽化混合器。
在汽化混合器中,均四甲苯与热空气均匀混合汽化后由氧化反应器的上部进入。氧化反应器为列管式固定床反应器,列管内均匀填装催化剂,管外由熔盐加热。熔盐在熔盐槽中有电热棒加热、控温,经熔盐液下泵进入反应器下部,经分配后进入管间,有反应器上部经熔盐冷却器管间返回熔盐槽。在反应过程中始终保持熔盐循环。氧化反应产生的多余热量在熔盐冷却器中与通入的冷空气换热降温后返回熔盐槽。
均四甲苯与空气混合物在氧化反应管内催化剂的作用下,反应生成均酐及副产物及完全氧化产物二氧化碳、水、反应后的反应气经一、二换热器管内与空气换热器降温,再经热管换热器进一步降温后一次进入一、二、三、四捕集器,热管换热器冷端为软水,被加热后放空。
(2) 水解工序
氧化工序得到的粗酐含有一定量的副产物,需经水解、升华进行精制,根据各捕集器得到的粗产品的质量情况分别进行一次或两次水解甚至多次水解。在水解斧中加入一定量的粗酐,有水计量罐经水解泵定量加入水,斧内根据需要加入一定量的活性炭,搅拌下通蒸汽预热。为加速过滤,在过滤后期可向水解罐内稍加空气压滤,空气由小空气压机提供。热过滤滤液根据水解粗产物的质量不同作不同处理。一般情况下,一捕物料可进入中间槽经液下泵送至结晶斧,搅拌下冷却结晶。为过滤完全,在结晶斧前又加以过滤器。在结晶初期应缓慢冷却,使结晶较粗。二捕、三捕产物进入结晶槽,自然冷却结晶
(3) 脱水、升华工序
来自水解工序的物料,均匀加入不透钢制的小舟中打开脱水斧快开盖,将小舟放入列管中,脱水斧的热量由熔盐提供,熔盐由电加热控温。脱水在真空状态下进行,真空由水箱、水喷射泵、水循环泵组成的真空系统,经缓冲罐,在一定的温度和真空下脱水、脱副产物,副产物停留在小舟中。
脱水后,小舟从脱水斧取出送至装料间,冷却后在小舟表面加入一定量的硅胶。打开升华斧端盖,依次将小舟送入升华斧个列管中。升华斧热样由各熔盐提供,熔盐由电加热控温。升华在真空条件下进行,由罗茨—循环机组提供,该机组一台供三台升华斧同时使用。在一定的真空度、温度、时间里,升华后的产品附在斧结晶腔壁上,打开斧盖稍冷却后清除、取出、送产品包装间,检验、包装、出厂。
(4) 干燥工序
气流干燥是利用高速流动的热空气,使物料悬浮于空气中,气力输送状态下完成干燥过程。操作时,热空气由风机送入气流管下部,以240m/s的速度向上流动,湿物料由加料器加入,悬浮于高速气流中,并与热空气一起向上流动,由于物料空气的接触非常充分,且处于运动状态,因此气固之间的传热和传质系数都很大,使物料中水分很快被去除。
真空干燥是一种间歇式操作装置,通过夹套内蒸汽加热,粗四酸在真空圆锥体内靠筒身的转动,不断翻滚物料,湿物料吸热后蒸发的水汽通过真空系统(泵)抽出筒外,从而达到物料的干燥。
5 、主要工艺参数
(1)氧化:
反应温度:435~445℃; 熔盐温度:380~390℃
催化剂负荷:50~60g/l.h;风量:2100~2300m3/h
汽化器温度:180~200℃;一捕入口温度;210~220℃
(2) 水解:温度95℃
粗酐:水:活性炭=1:5:0.05(一捕产品)
=1:4—4.5:0.05(二、三捕产品)
(3) 脱水:
熔盐温度:230℃;真空度:—0.09mpa
(4) 升华:
熔盐温度:250℃;真空度:—0.0999mpa
五、实习体会
实习的十天时间很快的就过去了,在这短短的时间内,我收获了很多的东西,感觉无论是从老师还是从从事学习的内容方面都收获了不少,真的感激这次经历,这些都是我在学校里和课本上找不到的,现在我们已经是大四了,马上就要踏入社会,这些实践性的东西对我们来说是至关重要的,它让我们脱离了书生的稚气,增加了对社会的感性认识、对知识的更深入的了解。
在以前的头脑中,我认为的工作都是很美好的,我想企业和工厂应该都是挺漂亮、挺大起的。现在不都是在讲环保、讲生态化吗,将来的工作环境肯定是整洁美丽的,工作应该也是有趣轻松的。我就是怀着这种憧憬到了我们的实习工厂。
通过长久的实际工作,工厂师傅的经验和熟练程度是我们这些大学生在课本上得不到的,所以,今后走入社会,我想我首先应该克服的就是眼高手低的毛病,俯下身来、踏踏实实的工作,去积累自己的经验,增加自己的知识!
对于生产实习,我想作为一名工科学生是必须要经历的。一个不接触工厂,不接触机器的工科人的经历是不完整的,所以学校的毕业生产实习就给我们提供了这样的一种平台让我们能充分的对工厂、对工具、对机器产生认知,进而了解和热爱。金工实习在机器的操作,自身的动手能力和对工具运用技巧的了解方面都给了我很大的帮助。实践的过程真的能够体悟到一种快乐,当然麻烦时时都有,可以说整个过程一直是痛苦并快乐着。每一个工种如今想起来似乎都是历历在目,而其中的快乐与痛苦更让人珍惜。
在实习时,同时也让我认识到社会是残酷的,没有文化、没有本领、懒惰,就注定你永远是社会的最底层!但同时社会又是美好的,只要你肯干、有进取心,它就会给你回报、让你得到自己想要的!像这样的实习也是给我们学习化工机械的同学了一种启发:在以后的工作学习中更应该多思考,多想现有的技术还有什么可以改进的地方,而不是被书本上的理论知识所束缚。虽然书本上的知识都是经典,但一些化工流程工艺是可以更新的。结合实际生产情况建设更高效、更经济、更实用的化工设备是我们追求的目标。
总之,虽然实习的时间很短,但对我来说,收获是很大的。我会更加珍惜我的学习,并且用实习的心得时时激励自己!
篇二 化工企业过程装备与控制工程专业生产实习报告8250字
1. 引言
生产实习是高等工科院校在教学过程中的一个重要的实践环节,是理论与实际相结合的有效方式,对于同学们接触工人、了解工厂、热爱自己的专业、热爱未来工作、扩大视野,并为后续课程学习增加感性认识提供了一个难得的机会。
过程装备与控制工程专业很多课程比较抽象,很多知识在没有与实践相结合的基础上是很难让人理解的,因此在专业课学习过程中组织学生去工厂认识实习与生产实习是非常有必要的。我们工科学生的生产实习是理论联系实际、培养高级工程技术人才、为后续专业课学习打下感性认识基础的非常重要的实践环节。实习时间虽然短暂,但在带队老师和工人师傅的细心介绍和耐心指导下,我感觉受益匪浅。
2. 实习目的
a) 通过观察和分析化工设备各生产过程,学到本专业的生产实践知识和了
解化工设备制造的感性认识,有利于对后续课程的理解;
b) 理论联系实际。用已学的理论知识去分析实习场所看到的实际生产技
术,使理论知识得到充实、印证、巩固、深化,既体会学习书本知识的必要性,又提高解决实际工程技术问题的能力;
c) 得到一次综合能力的训练和培养。
3. 实习单位简介
____化肥有限公司是以生产农用化学肥料为主的国家大型化工企业,始建于1958年。公司位于苏北唯一的三级一类城市——__。新亚欧大陆桥横贯东西与胶新、新长铁路交汇、京沪、连霍两条高速公路与205国道在境内形成双十字交叉。京杭大运河傍市而过,直抵长江,距__、__、__机场均100公里距离,交通区位得天独后。
在半世纪拼搏与奋斗中,__人形成了“团结、实干、创新、奉献、”为精神的企业文化,坚持“为出资人负责、为社会负责、为员工负责、为用户负责”的企业宗旨,增强凝聚力,强化执行力,提高创新力,诚信经营,合作共赢。荣获“全国双爱双评先进企业”、“__省先进基层党组织”、“__市和谐劳动关系模范企业”称号。
经过40多年坚持不懈的发展,企业规模不断壮大,具有年产36万吨合成氨、80万吨尿素、30万吨硫酸、30万吨甲醇、10万吨硫酸钾复合肥、10万吨磷酸一铵、20万吨高浓度复合肥料的生产能力。逐步成为__化肥行业的骨干企业,连续六年选入中国化工500强,化肥50强。企业通过了gb/t19001-__质量管理体系、gb/t24001-__环境管理体系、gb/t28001-__职业健康安全管理体系认证,凭借雄厚的技术力量、严格规范的质量管理,确保了产品质量的卓越可靠,__、__牌系列产品荣获“国家免检产品”、“__名牌产品”、“__省产品质量信得过”、“质量跟踪重点保护产品”等称号,深受广大用户信赖。企业被评为“全国质量服务信誉aaa级”、“__省质量诚信企业”。
__年5月,公司与全国520家重点企业之一的____煤业集团进行战略合作,__集团出资8120.5万元,成为企业最大股东,公司股权结构进一步优化,注册资本增至15000万元,企业实力、发展后劲明显增强。__集团的加入,确保了优质原料煤的安全有效供应,也为公司走上规模扩张之路带来了有力支持,企业在投入25000万元,完成20万吨合成氨,30万吨尿素、10万吨甲醇技改项目的基础上,于9月底,出资并购了____化工有限公司,注册设立____化工有限公司,投资__余万元改造了合成氨生产装置,成功启动了碳铵生产,最高日产超过600吨。
__年,____化肥有限公司与____农业生产资料连锁公司共同出资成立____生物化工有限公司,对公司产品的服务进行有效延伸:专注于生产经测土配方证明适用的复合肥料,专注于网络服务的北京乐姆农业生产资料有限公司__销售处农化队伍建设等。
主要产品:__、__、好望角牌尿素、碳酸氢铵、磷复肥.复合肥料品牌还有三有,亚菲利及乐姆等.
4. 实习内容
4.1 准备工作
实习第一天为准备资料时间。首先,我们到学校图书馆借阅与实习内容相关的书籍。然后,利用空余时间熟悉实习内容,并结合辅导书籍整理实习相关资料,记录好不懂得地方,方便到实习工厂后解决疑问。
4.2 理论课
第二天正式坐车前往__化肥厂。由于实习地点离学校较远,不能每天返回学校住宿,因此学校在实习工厂附近为我们安排了住宿。到达__市区并安顿好后,主要的任务就是熟悉实习工厂及住宿周边环境,确保接下来的实习任务顺利完成。
真正到工厂实习的第一天,上午主要是理论课。首先给我讲课的是工厂负责安全生产的主任,他主要给我们介绍了化肥厂的一些安全规章制度及措施。通过他的讲解我们知道:在化工厂里,人生安全是放在第一位的,工厂严格按照国家《安全法》、《职业病防治法》等有关规定实施,工厂的准则是“安全第一,预防为主,综合治理”,并倡导“不伤害自己,不伤害他人,不被他人所伤害”。工厂性质为:高温高压、易燃易爆、有毒、易灼伤、连续性生产的高危企业,危险性较大。但工厂里大都实行自动化控制,安全性还是有保障的。他还教了我们一些小方法,比如,进厂之前看风向,遇气体泄漏时往逆风方向逃跑。此外,进入工厂还要注意穿着,不能穿短裤,尽量穿长袖衣服,以防被灼伤。进厂之后,也要注意观察厂里的设备,如管道高度,地沟面,空中和地面的一些其他事物。
接着,工厂工艺流程的负责人给我讲解了该厂主要的工艺流程,并对工艺操作条件做扼要分析,弄清主线流程中机器设备的作用,方便我们接下来的实习过程。
工艺流程图:
4.3 实习参观
4.3.1 合成氨概述
氨是重要的无机化工产品之一,在国民经济中占有重要地位。农业上使用的氮肥,除氨水外,诸如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥都是以氨为原料生产的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
合成氨主要用于制造氮肥和复合肥料。氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料生产。液氨常用作制冷剂。
德国化学家哈伯19__年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:
n2+3h2≈2nh3
合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。
__化肥厂地处苏北平原,天然气主要靠西气东输,价格昂贵,但周围煤炭资源较丰富,因此采用煤炭进行造气。生产过程中,煤炭经脱硫、脱c、转化等工序,制得合成氨的原料气——半水煤气,它的主要成分为h2,n2,co。h2、n2混合气体经压缩后送入合成工序合成制得氨,后由冷冻工序提供冷源值得分离产品氨。上述工艺过程大致可分为制气、净化和合成三个部分。此外还有一套完整的蒸汽动力系统穿插于各个工序内。
其基本流程图如下:
4.3.2 原料气的制备
4.3.2.1 原料气制造
氨的合成以氮、氢两种气体为原料。原料气制造工序的主要任务是制造生产合成氨所用的粗原料气,即氢气和氮气的混合物。要生产合成氨,首先要制造含有氢、氮混合气的原料气。氢气来源于水蒸气和含有碳氢化合物的各种染料,__化肥厂采用__来制原料气。将煤放入半水煤气发生炉里,交替通入空气和水蒸气或连续通入富氧空气与水蒸气,就可以得到半水煤气。半水煤气的有效成分是 和 ,还含有co、co2和 等杂质。半水煤气净化后,可做合成氨的原料气。
4.3.2.2 原料气净化
脱硫工段:
脱硫的最好方法是在过量氢气存在的情况下,将这硫化物催化转化成硫化氢然后再使硫化氢与氧化锌反应达到脱除的目的。以焦炉煤气为原料,压缩至2.1 mpa后进入精脱硫装置,将气体中的总硫脱至0.1 ppm以下.焦炉气中甲烷含量达22.4%,采用纯氧催化部分氧化转化工艺,将气体中甲烷及少量多碳烃转化为合成甲醇用的一氧化碳和氢;经压缩进入甲醇合成装置.甲醇合成采用5.3 mpa低压合成技术,精馏采用3塔流程
变换
利用一氧化碳与水蒸气作用,生成氢气和二氧化碳的变换反应,去除原料气中的大部分一氧化碳,并生成等体积的氢气。
变换时用铁铬系或铜锌系或钴钼系作为催化剂。铁铬系中变催化剂的活性温度为320~550℃,但对 等抗中毒能力差;铜锌系低变催化剂的活性温度为200~280℃,对 的抗毒能力差;钴钼系全低变催化剂的活性温度为180~500℃,但对 等抗毒能力强。
脱碳工段
原料气经一氧化碳变换后,含有较多的二氧化碳,既有在原料气制造过程中生成的,也有变换反应过程中产生的。脱碳工序就是采用物理或化学方法脱除去原料气中的大部分二氧化碳,并回收二氧化碳作为工业原料。
精炼工段
合成氨原料气经变换和脱碳后仍含有少量的co和co2,它们的存在将构成对氨合成催化剂的影响。精炼工段的任务就是脱除少量的co和co2,以及微量的 、 等,此外,还有一些气体,如 、 虽然对催化剂无毒,但会影响合成氨的反应速率和转化率,在可能的条件下,也要除去,得到符合氨合成要求的洁净氨、氮混合气,清除杂质的方法常用的有三种。
铜氨液吸收法吸收co、co2和 等气体。
转化法使co、co2在较低温下转化为 。
液氮洗涤法让气体在低温下,使杂质气体逐一液化,最后用液氮洗涤,这可以比较彻底地清除有害气体。
以煤为原料的合成氨工艺流程
我国以煤为原料的中型合成氨厂多数采用20世纪60年代开发的三催化剂净化流程,即采用脱硫、变换和甲醇化三中催化剂气体,以代替传统的铜氨液洗涤工艺,以煤为原料的小型氨厂则采用碳化工艺,用农氨水吸收二氧化碳,得到碳酸氢铵产品,将脱碳过程与产品生产过程结合起来。
以无烟煤为原料的中型合成氨厂,将粒度为25~100mm的无烟煤加到固定床煤气发生炉中,交替地想炉内通入空气和水蒸气,气化所产生的半水煤气经燃烧室,废热钢炉回收热量后,送到气柜储存,半水煤气经典除尘去除其中固体小颗粒后,通过风机送到半水煤气脱硫塔中,用栲胶脱硫,以出去气体中的硫化氢;一滴进入原料气压缩机的前三段,加压到1.9~2.0mpa,然后气体进入饱和塔,用热水使气体变成饱和水蒸气,经热交换器被由变换炉来的变换气加热后,进入变换炉,用蒸汽式气体中一氧化碳变成氢气,变换后的气体返回换热器与半水煤气换热后,再经热水塔使气体冷却,进入变换气脱硫塔 用栲胶溶液脱硫,以脱除变换时有机硫转换而成的硫化氢。伺候,气体进入原料气压缩机的后两段,加压到12~13mpa,一次进入铜洗塔和碱洗塔中,最后一段,压缩到30~32mpa,进入油分离器,再次与循环气压缩机来的循环气混合并除去其中油雾后,进入冷凝塔和氨冷器的管内,再进入冷凝塔上部的管间,与管内的气体换热后,进入氨合成塔,在高温高压和催化剂存在的条件下,氢、氮气合成为氨,出塔气中含氨10%~16%,经水冷器与氨分离器分离出液氨后,进入循环气压缩机循环使用。分离出来的液氨进入液氨储槽。
4.3.2.3 氨的合成
4.3.2.3.1 氨合成工艺条件
温度:
合成塔壁≤ 150℃
进塔主气流 175℃-185℃
分流气出塔 150℃-160℃
零米360℃-380℃
一段热点460℃-470℃
二段进口400℃-430℃
废锅进口310℃-340℃
废锅出口190℃-200℃
水冷进口≤75℃
水冷出口≤30℃
氨冷出口0—5℃
压力:
系统压力 ≤31.4 mpa
输氨压力 ≤1.9 mpa
放氨压力 ≤2.55 mpa
氨蒸发压力≤2.45 mpa
废锅蒸汽压力≤1.3 mpa
总回收压力:0.4-0.7 mpa
气体成分:
补充气co+co2 ≤20ppm
进塔h2/n22.0-2.8
进塔ch4+ar20%
进塔nh3%:≤2.5%
将符合要求的氢、氮混合气压缩到一定压力下,在高温、高压及催化剂存在的条件下,将氢氮气合成为氨。一般由压缩、合成、冷冻等岗位组成。氨的合成氨是一个体积小的,有催化剂参与的可逆放热反应。
工艺条件的择优是以最大的经济效益为目标的。实践证明,用以铁为主的催化剂,在32mpa、450℃、催化剂粒度为1.2~2.5mm,原料气的氢氮比为3、循环气的氢氮比为2.8时,出口气体中的氨的浓度较高。压力越大,反应速率也越快。
氨合成催化剂采用以铁为主的催化剂,它有多种型号。我国生产使用的a10型催化剂,起燃温度为370℃,耐热温度为500℃,活性最高的温度为450℃左右。
1、分流进塔:反应气分成两部分进塔,一部分经塔外换热器预热,依次进入塔内换热管、中心管,送到催化剂第一床层,另一部分经环隙直接进入冷管束,两部分气体在菱形分布器内汇合,继续反应,这样使低温未反应气直接竟如冷管束,稍加热后,作为一、二段间的冷激气,从而减少冷管面积和占用空间,提高了催化剂筐的有效容积,并强化了床层温度的可调性。同时仅有65~70%的冷气进入塔内换热器和中心管,减轻了换热器负荷,因而减少了换热面积,相对增加了有效的高压容积,也使出塔反应气温度提高(310~340℃),即回收热品位提高。气体分流进塔使塔阻力和系统阻力比传流程小。
2、进塔外换热器的冷气不经环隙,这样温度更低,使进水冷器的合成气温度更低(约75℃左右),提高了合成反应热的利用率,降低了水冷器的负荷和冷却水的消耗。
3、水冷后的合成气直接进入冷交管间,由上而下边冷凝边分离,液氨在重力和离心力的作用下分离,既提高了分离效果,又减小了阻力。
4、塔后放空置于水冷、冷交后,气体经连续冷却,冷凝量多,因此气体中氨含量低,惰气含量高,故放空量少,降低了原料气消耗。
5、塔前补压:循环机设于冷交之后,气体直接进塔,使合成反应处于系统压力最高点,有利于反应,同时循环机压缩的温升不消耗冷量,降低了冷冻能耗。
6、设备选用结构合理,使消耗低,运行平稳,检修量减少,工艺趋于完善。
7、选用先进的自控手段,如两级放氨,氨冷加氨,废锅加水,系统近路的控制,均用了dcs计算机集散系统自动化控制,冷交、氨分用液位检测采用国内近几年问世的电容式液位传感器等新技术使操作更加灵活、平稳、可靠,降低了操作强度。
4.3.2.3.2 氨的净化和输送
由合成车间液氨仓库经液氨升压泵加压后的原料液氨,压力大于(表压),温度约20直接送入尿素生产车间27米楼面的液氨过滤器,进入液氨缓冲槽原料室。
来自一段循环系统冷凝器回收的液氨,自氨冷凝器a、b流入液氨缓冲槽的回流室,其中一部分液氨正常为60%,作为一段吸收塔回流液氨用,而其余液氨经过液氨缓冲槽的中部溢流隔板,进入原料室与新鲜原料液氨混合后一起至高压氨泵,这样可使液氨保持较低的温度以减少高压氨泵进口氨气化。氨缓冲槽压力维持在左右,设置在高为23米平面上,是为了具有足够的压头,使液氨回流进入一段吸收塔,同时也为了保证高压氨泵所需要的吸入压头。氨缓冲槽原料室的液氨,进入高压氨泵(单动卧式三联柱塞泵、打液能力为每台,反复次数180次/分、电动机250kw、三台高压氨泵一台备用)将液氨加压。
4.3.3 尿素的合成
4.3.3.1 尿素的基本性质
尿素的化学命名为碳酸铵,分子式是 .尿素是无色,无嗅,无味的针状或棱柱状结晶,工业产品为白色,含氮量为46.6%,分子量为60.04。
熔点:132.7℃
重度:20℃-40℃,1,335(固体),1.4(粒状)。
比重变化量:每1℃0.000208
假比重:0.52-0.64 ,0.7-0.75(粒状)
溶解度:易溶于水和液氨中,稍溶于甲醇、苯中,不溶于三氯甲烷、醚类中。
温度在30℃以上,尿素在液氨中溶解度较水中的溶解度大。
尿素合成的基本原理
用氨和合成尿素的反应,通常认为是按以下两个步骤,在合成塔内连续进行:
第一步:氨与作用生成氨基甲酸铵
第二步:氨基甲酸铵脱水生成尿素
这两个反应都是可逆反应,反应(1)是放热反应,在常温下实际上可以进行到底,在100、150℃时,反应进行的很快、很完全,为瞬时反应,而反应(2)是吸热反应,进行的比较缓慢,且不完全,这就使其成为合成尿素的控制反应。
实验证明,尿素不能在气相中直接形成,固体的氨基甲酸铵加热时尿素的生成速度比较慢,而在液相中反应才较快。所以,尿素的生产过程要求在液相中进行,即氨基甲酸铵必须呈液态存在。温度要高于熔点145-155℃,因此,决定了尿素的合成要在高温下进行。
氨基甲酸铵是个不稳定化合物,加热时很容易分解,在常温下60就可以完全分解,制取尿素时为了使氨基甲酸铵呈液态,采用了较高温度,所以必需采用高压。由上可知,合成尿素的反应的基本特点是高温、高压下的液相反应,并且是可逆放热反应。
4.3.3.2 尿素合成工艺条件的选择
4.3.3.2.1 过剩氨
过剩氨是比较化学反应量所多的氨,常以百分率表示,或表示。过剩氨可以使反应的平衡趋向生成尿素的一方,使产率提高。过剩氨也可以合成速度加快,提高尿素产率,过剩氨的存在,可与系统中的水结合,从而降低了水的浓度,抑制了副反应的发生。
过剩氨的存在,带走了一部分氨基甲酸铵的生成热,不仅有利于反应平衡趋向生成尿素的方向,提高尿素产率,而且有利于维持塔内反应的自热平衡,简化了合成塔的结构,过剩氨的存在,抑制了氢酸和氢酸氨的生成,降低了对合成塔的腐蚀。但过剩氨的存在也带来一些不利影响:
过剩氨的增加过大,二氧化碳转化率增加率也逐渐增加,并且提高了合成塔内反应系的平衡压力:
过剩氨的增加,会破坏反应物的自然平衡,为维持合成塔内顶定温度,就必须提高浓氨预热温度;
过剩氨的增加,会是反应混合物的比重下降,所需反应釜的容积加大,处理未生成尿素的反应物的设备也更大,动力消耗增加。
因此,在尿素水溶液全循环法中比一般在3.5-4.1。
水份
水是尿素合成过程中的产物,水存在可以降低氨基甲酸铵的熔点,有利于尿素的合成,氨基甲酸铵可以溶解在水中,故可以消除氨基甲酸铵的堵塞现象。
但是从化学反应平衡考虑,过量水的存在阻止合成反应向着生成尿素的方向移动,促进氨基甲酸铵水解等付反应的进行。造成co2转化率的下降,甚至引起合成与分解的操作条件恶性循环,水的存在也使合成塔腐蚀加剧。因此在水溶液全循环中,正常生产时避免向合成塔内送水,在过剩氨回收和液相循环中,也应力求减少水分进入合成塔,在工业生产中进行合成塔物料为1/0.65。
4.3.3.2.2 的纯度
的纯度低,不仅会降低的转化率,而且会造成合成塔的腐蚀,生产实践证明 %在86-100%时,纯度每下降1%的转化率下降0.6%左右。因此生产中过顶二氧化碳的纯度要在98%以上。
温度和压力
温度越高尿素达最大产率的时间越短,即反应速度越快,合成塔的生产强度也就提高,但温度越高,尿素产率的提高逐渐减慢,同时反应温度的提高也必须使合成系统的平衡压力提高,腐蚀速度增加,为保证尿素在液相中生成和一定的反应速度,对设备制造和__问题,合成塔的操作温度控制在185-190℃为宜。
合成塔的操作压力,必须大于操作条件下的平衡压力,否则会使氨基甲酸铵离解,溶液中氨气化,转化率下降,但操作压力过高,会使动力消耗增加,设备制造强度加大。因此合成塔的操作压力高于其操作条件下平衡压力10-30气压较好。
4.3.3.3 未反应成尿素物质的分离和回收
在合成塔中比为4时,约有65%的 和33%的氨转变成尿素,其余的氨和二氧化碳则以氨基甲酸铵,游离二氧化碳和游离氨的形式存在于合成后尿素熔融物种,这部分物质必须同尿素分离,以便循环利用。
为了把未反应生成尿素的从尿水熔融物分离出来,一般采用逐段降压和提温的方法,有利于 的溜出,但压力的选择,还必须考虑到,的回收,为年度的控制还必须考虑到高温对设备的腐蚀,温度和压力的选择都不宜太高太低。
为了把分离出来的回收,通常是在不同温度,不同压力,是用水和氨水,把 吸收,生成甲胺和氨水,然后返回尿素合成塔。
尿素的加工
尿素水溶液在加热过程中其热稳定性较差,在溶液加热达到一定温度以上就可能发生尿素水解反应和缩二脲的生成反应,其反应如下:
2nh2conh2=nh2conhconh2+nh3
nh2conh2+2h2o=(nh4)2co3=2nh3+ co2+h2o
两个副反应由于受温度、加热时间、溶液面上气氨分压等因素的影响。因此,尿液蒸发过程的操作压力越低,相应饱和尿液浓度就越高,如果达到相同浓度,蒸发压力高,相应所需温度也高。
为减少副产物的生成,避免出现结晶困难的问题,通常采用两段蒸发流程:一段蒸发的目的是在较低的压力下首先蒸发掉大量的水,然后在更低的压力下进行二段蒸发,已达到最后的浓度,两端蒸发的分界线是根据传热温差和冷却水温度而定的。
4.3.3.4 工艺流程介绍
其生产工艺流程特点是采用了二段分解、三段吸收、二段蒸发、自然通风的造粒流程,设计中未考虑解析系统,碳化氨水送碳氨母液槽。本流程分为压缩、合成、分解系统、循环系统、蒸发造粒四个生产过程,整个生产为单系统生产。
5. 实习心得体会
去工厂生产实习是我们的工科类专业课学习过程中必不可少的部分,生产实习是理论联系实际、培养高级工程技术人才、为后续专业课学习打下感性认识基础的非常重要的实践环节。通过去工厂参观实习,让我们认识了平时只能通过书本而想象的设备,在实习过程中,大家结合书本上学习过的理论知识,对工厂所用设备进行深入的了解,很多平时在学校很难理解的知识,在见到真实设备后就一下解决了。在工厂的“身临其境”让我们褪去了书本的束缚,真正的把理论联系到实际,在机械的轰鸣声中,在空气中弥漫的淡淡尿素味道里,在看到工厂的工人师傅认真生产,一丝不苟的表情时,我们队“过程装备与控制工程专业”有了更多的理解和体会。通过此次生产实习,大家对以后的专业知识学习更加有兴趣,更加容易接受。实习时间虽不长,但在这短暂的几天内让我收获不少,这为我以后走上工作岗位打下了坚实基础。
篇三 过程装备与控制工程生产实习报告12500字
过程装备与控制工程生产实习报告
第一部分 实习动员
作为一名大四的学生,并且是实验班的一员生产实习可谓我们大四生活的重中之重,生产实习不仅可以让我们了解到所学专业在过程工业中作用和地位,认识毕业后本专业从事的技术工作的内容和特点,为将来的硕士阶段学习打下坚实的专业基础基础;还可以通过相关从业人员的讲解了解到石油炼制的基本工艺过程,不仅从工艺上了解到炼油工业,而且通过对炼油设备的观察和分析,对各种化工设备在工艺流程中的作用和地位有更感性的认识。因此,生产实习不只是大学四年学习的一种总结和升华,更是为未来的硕士学习打下坚实的实践基础。
为保证生产实习顺利、安全、高效、高质的完成,实习之前班主任蔡老师对我们进行了实习动员。
在实习动员大会上老师首先为我们介绍了实习的主要内容和相关要求:
(1).典型化工生产过程实习
通过参观典型化工生产单元,详细的了解化工生产工艺流程及主要设备的安装及使用特点;通过参观典型化工单元控制室,详细了解化工过程及设备的检测及控制技术。
(2).典型化工机器及设备制造过程实习
在指定化工机械和设备制造厂参观,了解机器和设备的装配工艺和主要方法,掌握典型化工机器和化工设备总体机构、特点、工作原理及主要零部件的作用,了解机器型号、规格及主要性能参数、使用特点等;掌握典型化工机械和设备主要零部件的加工方法、制造过程和制造工艺;通过对典型零件制造工艺和主要工装的分析学会编写零件制造工艺卡的方法,掌握零件典型工装、夹具的设计方法;并且要了解机器和设备的检测、检验方法和过程,掌握主要焊接方法和焊接工艺,了解检验焊接质量的方法。
(3).计算机模拟仿真实习
通过在仿真实验室进行的模拟化工单元操作过程仿真,进一步了解化工单元的组成,了解机器和设备在化工单元及流程中的作用;了解化工过程及其设备的在线监测与控制技术等。
(4).拆装实习
通过对典型化工机器如:l型气体压缩机,单、多级离心泵,水环式真空泵等的拆装为主,结合一些常用阀门的拆装,了解一些典型机器、设备、阀门的结构特点和工作原理。
然后老师对安全问题向我们提出了一系列要求:
例如:一定要穿运动鞋,不能穿皮鞋;不能在现场嬉笑打闹;不可以随便动现场设备等等。
总之,通过实习动员大会我们在激动期盼的同时对于实习也有了较为理性的认识。实习是一个学习而非走形式玩乐的过程。希望实习过程能让我学到更多的有用的知识。
第二部分 化工生产企业实习
一.化工一厂(乙烯装置:乙烯产品纯度高达99.95%)
1.流程
2.设备
a.老区裂解炉:热裂解反应,无催化剂,反应产物: 、甲烷(16-17%)、乙烯、乙烷、丙烯、丙烷、丁二烯( 组分)、异戊二烯( 组分)、二甲苯( 、 )、重柴油、渣油( )
b.新区裂解炉:炉膛温度1600℃,附产超高压蒸汽(10mpa)。有底部火嘴和侧壁火嘴,炉膛内保持负压,利用风机控制炉膛进气量,从而控制氧含量;控制排烟量(排烟量过大会带走过多热量)。裂解炉上部为对流室(翅片式),利用中压蒸汽吹灰;下部为辐射室,为立式炉管。
c.余热锅炉:给裂解气降温(降至800℃左右),防止烯烃在高温环境下聚合或发生脱氢碳化,相当于列管式换热器。
d.汽油分馏塔:塔顶温度为90℃,作用为除去重柴油,渣油等 组分。
e.急冷塔:除去 以下组分中的水分,结构形式为板式塔,塔底为90℃急冷水,中间段为换热器,急冷水经过换热器换热后从塔顶喷淋。
f.裂解气压缩机:五级压缩至3.475mpa,采用级间冷却(作用①.防止丁二烯高温聚合;②.使重组分低温液化。
g.冷箱:包含乙烯制冷系统、丙烯制冷系统和二元制冷系统,由一系列换热器组成,每股换热温差不大,一级一级逐渐降温。
h.脱甲烷塔:分为6股进料,越靠近塔顶进料温度越低。在此塔内脱除甲烷和氢气。
i.碳二加氢反应器:分为上下两段,物料进入反应器后先在上段反应:乙炔加氢生成乙烯或乙烷,低温,氢含量低。
j.脱丙烷塔:分离丙烯和丙烷。
二.化工二厂(聚丙烯装置)
1.流程
盘车电机---减速箱---超越离合器---主电机---减速器---同向双螺杆泵(外部有夹套)---齿轮泵(加压)---过滤器---挤出机---切粒(水下)---脱水---干燥---振动筛(筛分)---料仓
注释:●未反应的丙烯气体会混合一定量的聚丙烯粉末,需用袋式除尘器除去聚丙烯粉末后,由压缩机打回到反应器内再利用。由于丙烯气体易燃、易爆,因此过滤袋需有防静电装置,同时应采用抗氧化材质(聚丙烯粉末中混有反应器中的强氧化催化剂)。
2.设备
a.盘车电机:当全套设备检修完毕重新开车时,由于双螺杆泵内的熔融状态下的聚丙烯冷却后黏度很大,因此需要很大的启动转矩,靠主电机很难带动全套设备转动。此时,便一方面通过螺杆泵螺杆泵夹套为其内熔体加热,另一方面采用转矩高的盘车电机启动,当设备转起来后,通过超越离合器的作用,盘车电机停止工作,改为主电机带动设备转动。
b.y型过滤器:通常装在减压阀、泄压阀、定水位阀或其他设备进口端,其作用是过滤介质中的机械杂质,可对污水中的铁锈、沙粒、液体中的少量固体颗粒等进行过滤以保护设备管道上的配件免受磨损和堵塞,以保护设备正常工作。过滤器待处理的水由入水口进入,水中的杂质沉积在不锈钢滤网上,由此产生压差,当压差达到设定值时,过滤器即需清洗。
c.
d.高速压缩机的密封系统:
电机---膜片联轴器(弹性联轴器)---增速器---压缩机
①增速器输入轴和输出轴端均采用机械密封;
②压缩机自身密封采用干气密封系统。
d.机械密封:
①机械密封由静环座,动、静环辅助密封圈,防转销,动环(补偿环),静环(非补偿环),弹簧,弹簧座,紧定螺钉组成。紧定螺钉把弹簧固定在轴上,静环上开槽,通过防转销与静环座固定,静环座与设备连在一起。
②机械密封有四个密封点分别为:
a.动环与静环之间的密封---动密封;
b.动环与轴之间的密封---相对静密封;
c.静环与静环座之间的密封---静密封;
d.静环座与设备之间的密封---静密封。
e.干气密封系统
当端面外侧开有流体动压槽的动环旋转时,流体动压槽把外径一侧的高压隔离气压入密封端面之间,由外径至槽径处气膜压力逐渐增加,而自槽径至内径处气膜压力逐渐下降,因端面膜压增加使其所形成的开启力大于作用在密封环上的闭合力,在摩擦副之间形成很薄的一层气膜,从而使密封工作在非接触状态下。所形成的气膜完全阻塞了相对低压的被密封介质的泄漏。
①干气密封在两个密封端面间由气膜形成一定密封间隙,一般为几微米。若密封间隙太大会导致泄漏量增加,密封效果较差;而密封间隙过小,容易使两密封面发生接触,且干气密封的摩擦热不能及时散失,由于端面无润滑,冷却,很快将引起密封端面过热导致变形,最终导致密封失效。
②密封工作时端面气膜形成的开启力与弹簧和介质作用力形成的闭合力达到平衡,从而形成非接触运转。干气密封的弹簧力是很小的,主要目的是当密封不受压或不工作时能确保密封的闭合,防止意外发生。
f.磁翻板液位计:又称磁性浮子液位计,根据浮力原理和磁性耦合作用研制而成。当被测容器中的液位升降时,液位计本体管中的磁性浮子也随之升降,浮子内的永久磁铁通过磁耦合传递到磁翻柱指示器,驱动红、白翻柱翻转180°,当液位上升时翻柱由白色转为红色,当液位下降时翻柱由红色转变为白色,指示器的红白交界处为容器内部液位的实际高度。
作用:①.测液位高度;
②.作为警报系统,达到上、下限时传出信号;
③.远程监控,可实现传感器输出。
g.管道颜色与介质:冷却水--绿色,水蒸气或消防水--红色,仪表风--淡蓝色,空气--灰色,氧气--蓝色或深蓝色,酸碱--紫色,可燃介质--棕色,氮气--黄色。此外有保温的管道一般走的是蒸汽或低温盐水。
h.隔膜泵:隔膜泵是容积泵中较为特殊的一种形式,它是依靠一个膜片的来回鼓动而改变工作室容积来吸入和排除液体的。它的传动形式有机械传动、液压传动和气压传动等,其中应用较为广泛的是液压传动。隔膜泵的工作部分主要由曲柄连杆机构,柱塞,液缸,隔膜,泵体,吸入阀和排出阀等组成。隔膜片两侧带有网孔的锅底状零件,此零件是为防止膜片局部产生过大的变形而设置的,称为膜片限制器。
工作原理:隔膜泵工作时,曲柄连杆机构在电机的驱动下,带动柱塞作往复运动,在泵的两个对称的工作腔中各装有一块隔膜,当活塞向后移动时,隔膜凹进去,隔膜泵腔内的体积越变越大,压力也随之降低,当压力低于入口管压力时,泵的入口阀打开,流体流入隔膜泵腔内,当活塞达到内止点时,泵腔内体积达到最大,压力达到最小,流体充满泵腔,这时入口阀关闭,吸入过程完成。当活塞向前移动,膜片慢慢鼓起,泵腔内体积越来越小,腔内压力越来越大,出口阀被压开,流体被压出泵腔,当活塞达到外止点时,出口阀在弹簧力作用下关闭,流体排出过程结束。
适用于:输送各种腐蚀性液体,带颗粒,高粘度、易挥发、易燃、剧毒的液体。
材料:泵体一般采用塑料、铝合金、铸铁、不锈钢等材料;隔膜根据输送的介质的不同一般采用丁腈橡胶、氯丁橡胶、氟橡胶、聚偏氟乙烯、聚四六乙烯等。
介质泄漏报警:隔膜泵的隔膜有两层,当其中一层隔膜发生破裂,两层隔膜间就会漏入介质,引起两层隔膜间压力升高,引发报警。
三.化工六厂(高压聚乙烯装置)
1.流程
原料(裂解气)---缓冲罐---活塞压缩机(压缩终了压力为16-17mpa)---柱塞压缩机(压缩终了压力为180-190mpa)---反应釜a---换热器---反应釜b---高压分离器---低压再分器---造粒(挤出、切粒)---脱水器---干燥器---振动筛(筛分,φ3_3圆柱)---料仓(风送)
注释:●向反应器内注入引发剂时采用柱塞泵(柱塞与缸体之间采用五道并在一起的填料密封),柱塞泵有计量功能,通过控制活塞行程,便可以控制引发剂注入量,由于引发剂注入量会直接影响反应器内的温度,因此当柱塞泵出现问题时便会引起温度连锁反应。
●粒料在由风送至料仓的过程中温度依旧较高,所以此时会由粒料中挥发出乙烯气体,由于乙烯气体易燃,因此料仓内需由离心风机(可靠性高)送入净化风(压缩空气)吹走乙烯气体,同时为粒料降温防止其结团。
●由反应器出来的物料经过分离设备分离后,熔融物料进入后续过程,而未反应的乙烯气体由压缩机打回反应器a内继续反应。
●单螺杆挤出机的机头部分才是造粒部分。
●仪表风:指的是供给各生产用的气动动力,如:气动阀和用来控制和显示工艺参数的仪表用气。空气质量要求较高,压力稳定,仪表风要常开。
工艺风:指的是来自本文由实习报告收集整理空气压缩机的压缩空气,用来吹扫设备、管道。空气质量要求一般,压力较稳定,有需要时才开启使用。
2.设备
a.缓冲罐作用:①.通过控制进气量控制压缩机压力波动;
②.利用重力沉降原理除去裂解气内固体。
b.反应器:
两台反应器共五个引发剂注入口,配备六台柱塞泵(双作用),反应器a上部的引发剂注入口有备用柱塞泵,因为此点对整个釜内温度有很大影响。
c.柱塞泵:柱塞泵没有十字头结构,柱塞较长,连杆通过四瓣环(相当于弹性联轴器)直接与柱塞联接。
四.炼油一厂
1.催化裂化装置
简介:催化裂化是炼油厂中提高原油加工深度,生产高辛烷值汽油、柴油和液化气最重要的一种重油轻质化的工艺过程。是将常减压蒸馏后的重质馏分再次进行化学结构上的破坏加工而得到轻质产品的过程。
其原料除常减压蒸馏得到的330-500℃馏分外,脱沥青油、延迟焦化所得蜡油、各种脱蜡装置所得蜡膏、石蜡生产中的蜡下油、常压重油和减压渣油等均可作为催化裂化的原料。
一般具有反应-再生系统、分馏系统、吸收稳定系统,对处理量大,反应压力高的装置一般还有再生烟气的能量回收系统。
主要设备:
①.提升管反应器:催化裂化工艺中全部的全部的反应都是在提升管内发生的,提升管反应器从下至上依次是预提升段、反应进料段、催化裂化反段、出口油气分离系统和待生催化剂汽提段。各段作用分别为:
a.预提升段:在提升管反应器的最下段,现在都采用直管和蒸汽环管的蒸汽注入方式,使从斜上方来的再生催化剂重新分布、转向并加速,使催化剂分布均匀,进入提升管后在整个截面上密度和流速相对稳定,为催化剂与原料充分混合提供一个理想的反应环境,改善装置操作性能。预提升介质可以是干气和水蒸汽,采用干气预提升不仅可能钝化催化剂上的重金属,而且可以降低提升管入口催化剂的密度,更有利于原料与催化剂的接触而减少生焦。
b.反应进料段:采用良好的进料分布和雾化系统对获得好的产率分布是很重要的,原料油越重其粘度就越大,雾化成较小的油滴就越困难,如果原料油不能完全而又快速气化,将会增加焦炭产率。现在装置多采用高效(kh 型或lpc 型)进料喷嘴,装置进料油和水蒸汽在进料喷嘴内完成破碎,形成好的喷射性能和分散性能,原料被快速雾化分散为与催化剂颗粒(平均为60-80μm)相当的微液粒有利于原料分子与催化剂颗粒的传质与传热,进而提高转化率,改善选择性。只有当雾化效果好时,进料油才能快速覆盖整个提升管横截面,保证剂油接触,达到充分、均匀反应的目的。
c.、催化反应段:油气和催化剂在提升管内的停留时间就是反应时间,它是装置的一个关键操作参数,在设计中应该合理地选择。装置如果以汽油产品方案为主时,反应时间一般确定为2-3s,以柴油产品方案为主时,反应时间一般确定为3-4s,当反应时间确定后,就可以通过计算提升管的直径和高度。
d.提升管出口油汽分离系统:此系统有两个作用,一是尽快使油气与催化剂分离,避免过度的二次裂化和氢转移等反应发生,提高产品收率的产品质量;二是减少催化剂随油气的带出,降低旋风分离器入口颗粒浓度,减少催化剂的单耗。现装置中多采用二级旋分器系统、旋流快分(vqs)加旋分器、倒l 型快分加旋分器几种形式。
e.反应后待生催化剂汽提部分:待生催化剂的汽提就是要把进入再生器的待生催化剂和催化剂颗粒之间及催化剂微孔内的烃类脱除,这一过程是在密相流化床上实现的,化剂与水蒸汽逆流接触,汽提效果的好坏与汽提蒸汽用量、催化剂循环量、待生剂的停留时间、操作温度和压力以及汽提段的结构设计等有关。一般汽提段蒸汽用量为4-5kg/1000kg催化剂。
②.再生器
主要作用为烧去结焦催化剂上的焦碳以恢复催化剂的活性。
_ 在催化裂化工艺中催化剂循环使用,因为新的催化剂活性太强会腐蚀反应器床层,因此采用新旧催化剂混合使用,一方面保证了催化剂的活性,以保证反应正常进行,另一方面也可保证反应器的使用寿命。
2.延迟焦化装置
简介:延迟焦化是一种石油二次加工技术,是以贫氢的重质油(如减压渣油、裂化渣油以及沥青等)为原料,在高温(400~500℃)进行深度的热裂化反应。通过裂解反应,使渣油的一部分转化为气体烃和轻质油品;由于缩合反应,使渣油的另一部分转化为焦炭。
作用:将重质油馏分经裂解、聚合,生成油气、轻质油、中间馏分和焦炭。
①.流程
原料油---原料油缓冲罐---油泵---换热器---混合油气分馏塔
a.塔顶油气---回流罐(上进下出)---冷却---脱硫;
a.侧线:a.柴油加氢;b.蜡油回流;c.重蜡油回流;d.蜡油产品;e.中段回流。
b.410℃塔底渣油---加热炉缓冲罐---油泵---加热炉(加热至495℃)---焦化
塔---
②.设备
a.焦化塔:采用无塔板式结构。渣油从塔底进入,向四周绽开,发生裂解反应,长链变为短链,焦碳积聚在塔壁上,当生焦至12m时,通过三通将物料由另一塔底引入焦化塔中进行脱焦处理(三通的三个接口分别与两个塔的塔底和一个塔的塔顶连通,只有在停工时才将进料切换到塔顶)。
b.泵的润滑:油雾润滑,用氮气将润滑油转化为油雾通过管道送至轴承处进行润滑。
③.除焦过程:焦碳塔中有一生焦孔,用蒸汽(分为大吹气和小吹气)从此孔吹入将焦碳所携带的油气吹出,去往放空塔,同时冷却焦化塔,继而用高压水进行钻扩孔,二钻用同等压力(35mpa)的高压水将焦碳打碎,同时在重力作用下焦碳被冲出流入焦池。
3.柴油加氢装置(设备讲座)
设备:
a.反应器--加氢装置核心设备
反应条件:高温(放热反应),高压
a.热壁反应器:外侧包有保温层;
b.采用隔热混凝土衬在反应器内壁,隔热混凝土内加有1cr18ni9ti的不锈钢衬筒,以防止混凝土污染反应器内的催化剂。
b.空冷器
a.湿式空冷器:借助于喷淋的或呈雾化状态的少量水在翅片表面蒸发而强化传热,具有传热系数大,冷却能力强的特点。
b.干式空冷利用风机连续送风,使管束内流体被空气冷却。
干式空冷器结构:管箱,鼓风机或引风机,百叶窗(调节进气量,以此控制被冷却介质出口温度)。
c.离心压缩机
特点:流量大,转速高,连续性好,可靠性高。
结构组成:汽轮机、压缩机、油站、干气密封系统。
汽轮机调速机构:拉杆控制气门开关大小来控制进入汽轮机叶片内的蒸汽的流量(共有5个主气门,其中1号气门中间有小孔,使气阀全关时依旧有蒸汽可以通过,由此保证气门两侧不会产生过大的压差顶断阀杆。
_ 开车前第一步需用蒸汽暖管,否则会产生水击现象。
_ 停车时先降压再降温,以防止氢脆(氢蚀只能通过选材来防治)。
d.往复压缩机
结构组成:油站、水站、电机、飞轮、曲轴、十字头、连杆、活塞、吸入阀、排出阀等。
润滑方式:
a.无油润滑:石墨;
b.有油润滑:气缸润滑油通常控制在5-6滴每分钟,若过量会导致结焦堵塞排气阀,从而使气阀关不严导致气体泄漏;填料润滑油一般控制在12滴每分钟。
e.液力透平
液力透平是将液体工质中压力能转化为机械能的机械设备,利用液力透平可将工艺流程中的液体余压回收再利用,转化为机械能驱动机械设备,以达到节能的效果。
透平的最主要的部件是一个旋转元件,即转子,或称叶轮,它安装在透平轴上,沿圆周均匀排列的叶片。流体所具有的能量在流动中,经过喷管时转换成动能,流体所具有的能量在流动中,经过喷管时转换成动能,流过叶轮时流体冲击叶片,推动叶轮转动,从而驱动透平轴旋转。透平轴直接或经传动机构带动其他机械,输出机械功。透平机械的工质可以是液体、蒸汽、燃气、空气和其他气体或混合气体。以液体为工质的透平称为液力透平。
做为一个节能的装置,液力透平是近几年才兴起来的。在使用上,常常以反转离心泵作液力透平,这样更经济。液力透平本身就是一台泵,并且其动力输出端往往驱动的是另一台泵。
f.如何减小压缩机出口气量?
①.将压缩机出口气体通过返回阀打回到压缩机入口(中间降温、降压)。但此方法会使压缩机对打回气体所做的功浪费,造成电能的浪费。
②.控制入口阀阀片开度,改变压缩气量。
③.调节压缩机余隙。
4.高压加氢裂化装置
①.反应流程
---原料缓冲罐d-3101---油泵p3106---自动反冲洗过滤器
sr3101---原料缓冲罐d-3102---高压泵p3102(液力透平)---e3101(原料与
加氢裂化反应器反应产物放热)---加热炉f3101---加氢精制反应器f3101---
加氢裂化反应器r3102---e3101---储罐d310
注释:●原料来自常减压蒸馏装置的减一、减二、减三线。进料时采用冷、热混合进料。
a.热进料:从减压塔侧线采出后直接进料。此种方法优点是节能,无需再为原料加热(反应温度一般为360℃),但原料中携带的水分会对催化剂活性产生影响,且容易导致反应器“飞温”。
b.冷进料:原料由减压塔侧线采出后先打入罐区储存(原料需降温至90℃以下才能进入罐区,目的是防止原油突沸)。此种进料优点在于原料在储罐内可静置脱水,避免了水分对催化剂的影响,且可以控制裂化原油的质量,当上游所供原料品质不满足设备使用条件时可以随时切泵,而不必停产。但此方法在一定程度上会造成人力、物力、财力的浪费。
因此,未解决上述两种进料方式的矛盾,充分利用两种进料方式的优点,现采用冷、热混合进料。
●为防止原料缓冲罐d3101和原料缓冲罐d3102上的原油挥发引发爆炸,因此在两罐顶部冲入氮气保护。罐顶采用分程控制,使罐顶压力始终保持在0.4mpa左右。
●分程控制:将控制器输出信号全程分割成若干个信号段,每个信号段控制一个控制阀。每个控制阀仅在控制器输出信号整个范围的某段内工作。
分程控制
②.设备
a.加氢反应器:加氢反应器多为固定床反应器,加氢反应属于气—液—固三相涓流床反应,加氢反应器分冷壁反应器和热壁反应器两种:冷壁反应器内有隔热衬里,反应器材质等级 较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2×1/4cr—1m0。加氢反应器内的催化剂需分层装填,中间使用急冷氢,因此加氢反应 器的结构复杂,反应器人口设有扩散器,内有进料分配盘、集垢篮筐、催化剂支承盘、冷氢管、冷氢箱、再分配盘、出口集油器等内构件。
a.加氢精制反应器:
结构:加氢反应器多为固定床反应器,加氢反应属于气—液—固三相涓流床反应,加氢反应器分冷壁反应器和热壁反应器两种:冷壁反应器内有隔热衬里,反应器材质等级 较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2×1/4cr—1m0。加氢反应器内的催化剂需分层装填,中间使用急冷氢,因此加氢反应 器的结构复杂,反应器人口设有扩散器,内有进料分配盘、集垢篮筐、催化剂支承盘、冷氢管、冷氢箱、再分配盘、出口集油器等内构件。共三床层,由于从加热炉出来的原料的温度在360至380℃左右,且加氢精制反应中发生的是强放热反应,因此如无人为控制措施,三层床层的温度将逐渐升高,将对催化剂活性造成影响。因此,通过在床层入口通入冷氢的方法控制床层温升。一床层温度控制在375℃,在二床层入口处通入80℃冷氢,将二床层温度也控制在375℃(床层入口温度控制在360℃),同理,在三床层入口处通入80℃冷氢,将三床层温度也控制在375℃(床层入口温度控制在360℃)。此过程中的氢油比控制在700:1。
反应:加氢脱硫(生成 ),加氢脱氮(生成 ),加氢脱氧(生成 ),加氢脱金属,不饱和烃类的饱和。反应催化剂为co、mo、ni、w等金属混合物,为反应提供加氢活性。催化剂载体为 。
反应控制指标:由于脱除氮、硫、氧的过程为将有机变为无机的过程,由于有机氮最难脱除,且对加氢裂化反应器的影响最大。因此,此过程反应终了只需控制有机氮含量小于10ppm(parts per million,浓度单位,表示溶质质量占溶液总质量的百万分比)即可。
b.加氢裂化反应器
共四层床层。反应器内发生的是弱吸热反应,反应催化剂为钴,钼,镍,钨的金属混合物,为裂解反应提供活性,催化剂载体为分子筛。
b.高压加氢换热器:反应器出料温度较高,具有很高热焓,应尽可能回收这部分热量,因此加氢装置都设有高压换热器,用于反应器出料与原料油及循环氢换热。现在的高压换热器多为 u型管式双壳程换热器,该种换热器可以实现纯逆流换热,提高换热效率,减小高压换热器的面积。管箱多用螺纹锁紧式端盖,其优点是结构紧凑、密封性好、便于 拆装。
c.高压分离器:高压分离器的工艺作用是进行气—油—水三相分离,高压分离器的操作条件为高压、临氢,操作温度不高,在水和硫化氢存在的条件下,物料的腐蚀性增强,在使用时应引起足够重视。另外,加氢装置高压分离器的液位非常重要,如控制不好将产生严重后果,液位过高,液体易带进循环氢压缩机,损坏压缩机,液位过低,易发 生高压窜低压事故,大量循环氢迅速进入低压分离器,此时,如果低压分离器的安全阀打不开或泄放量不够,将发生严重事故。
d.加热炉:加氢反应加热炉的炉型多为纯辐射室双面辐射加热炉,这样设计的目的是为了增加辐射管的热强度,减小炉管的长度和弯头数,以减少炉管用量,降低系统压降,炉管材质一般为高cr、ni的合金钢。为回收烟气余热,提高加热炉热效率,加氢反应加热炉一般设余热锅炉系统。
e.氢气压缩机
a.新氢压缩机:新氢压缩机的作用就是将原料氢气增压送入反应系统,这种压缩机一般进出口的压差较大,流量相对较小,多采用往复式压缩机。往复式压缩机的每级压缩比一般为2—3.5,根据氢气气源压力及反应系统压力,一般采用2~3级压缩。往复式压缩机一般用电动机驱动,通过刚性联轴器连接,电动机的功率较大、转速较低,多采用同步电机。
b.循环氢压缩机:循环氢压缩机在系统中是循环作功,其进出口压差一般不大,流量相对较大,一般使用离心式压缩机。由于循环氢的分子量较小,单级叶轮的能量头较小,所以循环氢压缩机一般转速较高(8000—10000r/min),级数较多(6~8级)。
循环氢压缩机除轴承和轴端密封外,几乎无相对摩擦部件,而且压缩机的密封多采用干气式密封和浮环密封,再加上完善的仪表监测、诊断系统,所以,循环氢压缩机一般能长周期运行,无需使用备机。
循环氢压缩机多采用汽轮机驱动,这是因为蒸汽汽轮机的转速较高,而且其转速具有可调节性。
f.自动反冲洗过滤器sr:加氢原料中含有机械杂质,如不除去,就会沉积在反应器顶部,使反应器压差过大而被迫停工,缩短装置运行周期。因此,加氢原料需要进行过滤,现在多采用自动反冲洗过滤器。
自动反冲洗过滤器内设约翰逊过滤网,过滤网可以过滤掉固体杂质颗粒,当过滤器进出口压差大于设定值(0.1~0.18mpa)时,启动反冲洗机构,进行反冲洗,冲洗掉过滤器上的杂质。
5.三废处理装置
包括污水气提、硫磺回收、溶剂再生、尾气加氢四个单元。
①.污水气体单元流程
酸性污水--闪蒸--
注释:●闪蒸的目的是除去酸性污水携带的油气,再将油气通入贫胺液(mdea,低温条件下易与硫化氢结合;高温条件下易与硫化氢分离)中,除去油气中的硫化氢气体。
●气提塔塔顶:硫化氢气体---燃烧炉---余热锅炉--反应器(产生硫磺)
---
●换热器
●为防止闪蒸时油滴挥发造成塔内压力急剧上升,采用分程控制的方法将闪蒸塔塔顶压力控制在0.12mpa。具体控制过程为:当闪蒸塔塔顶压力高于0.12mpa时,系统控制放出阀门自动打开,使塔内压力下降;当闪蒸塔塔顶压力低于0.12mpa时,系统控制进气阀门自动打开,使塔内压力升高。
●闪蒸压力越低,扩容越大,闪蒸出来的东西越多。此装置采用单塔气体,侧线不出氨的工艺。
●3.5mpa的蒸汽为中压蒸汽;1.0mpa蒸汽为低压蒸汽(此装置中用的是0.35mpa的低压蒸汽)。
②.设备
a.闪蒸塔后的两个储罐之间采用倒u形的管路相连,以此在储罐内形成液封,因为,储罐上方存在硫化氢气体,硫化氢与铁在一定条件下会反应生成硫化亚铁,而硫化亚铁是一种易爆物质。
b.反应器(卧式)
反应器内发生的反应为: ,且硫化氢和二氧化硫的比为二比一。
c.余热锅炉:余热锅炉与汽包通过升气管和降液管相连,汽包内必须保证50%的气相空间使蒸发产汽。汽包采用三冲量控制模式,即控制汽包的液位、给水流量、产汽流量。
d.硫冷器:降温使气态硫变为液态硫,以此减小气相分压,推动反应正向进行。此装置采用三级硫冷,以确保反应达到90%以上。
e.
五.炼油二厂--常减压蒸馏装置
原料:以加工进口油为主(中东、非洲),要求硫含量小于等于1.5%,酸含量小于等于0.5mgkoh/g(此单位用每克原油消耗标准氢氧化钾的质量来表示酸含量)。
①流程:
原油---原油泵---换热器(换热后温度在120-130℃)---电脱盐罐(2个串联)---换热器(换热后温度升高至220-230℃)---初馏塔(闪蒸塔)---空冷---水冷---
稳定塔
注释:●
●
②.设备:
a.电脱盐罐:采用平行的电极隔筛,水在电场力的作用下,沉到罐底,当水的高度达到电脱盐罐高度的三分之一时(采用浮筒式液位计测液位),水通过泵排出电脱盐罐。
电脱盐原理:原油中的盐大部分是溶于所含的水中,所以脱盐和脱水可同时进行。由于含水原油是一种比较稳定的油包水型乳状液,所以脱水,脱盐实质是破坏这种状态,使水凝结,达到油水分离的目的。
电脱盐是通过在原油中注水,使原油中的盐分溶于水中,再注入破乳剂,破坏油水界面和油中固体盐颗粒表面的吸附膜,然后借助高压电厂的作用,使水滴感应极化而带点,通过交变电场的作用,带不同电荷水滴相互吸收,融合成较大的水滴,原油和水采用沉降分离即可。
脱盐后原油的检验指标为:原油含盐量小于0.3mg/l;
原油含水量小于0.025%。
b.塔:此装置中的闪蒸塔、稳定塔、常压塔均为浮阀式板式塔;而减压塔为波浪形规整填料式填料塔,具有直径大,换热面积大的特点,便于不同组分之间的分离。
c.浮筒式液位计:有浮筒室、浮筒(检测部分),电动系统(转换部分),电子测量系统(变送部分)等组成。当被测液位发生变化时,浮筒浸在被测液体中的体积与浮筒所受浮力成正比。因此,只要检测出浮筒所受浮力即可间接检测出液位。浮筒与电动系统(扭力管)刚性连接,将液位的变化转换为扭力管的转角的变化,从而使差动变压器输出相应的电压信号。最后通过变送部分将输入的电压信号转换放大后,输出标准的4-20ma的电流信号。
d.高温管道材料:1cr5mo,15crmo。
③.设备腐蚀情况及防治措施
a.低温腐蚀
在三者综合作用下,在塔顶形成hcl、 混合的酸性环境,腐蚀塔顶(粗馏不明显),常压10层以上塔板及封头,空冷器及水冷器均发生严重腐蚀。
___措施_
a.工艺__措施
●电脱盐运行控制,脱盐后原油含盐量控制在较低水平。
●选择适宜的破乳剂,由于不同的原油其含盐类型有所不同,需通过筛选试验选择适合原油性质的破乳剂,同时,根据原油性质的变化随时改变破乳剂的注入量,以提高脱盐效果。
●三塔顶注中和缓蚀剂。
b.选用耐腐蚀金属材料
●7层以上塔板采用0cr18ni9;封头及筒体衬里采用0cr13;空冷器及水冷器可采用钛管(但强度不足),因此一般采用双相钢(又称尿素级不锈钢,理论上铁素体相、奥氏体相各占50%时__效果最好)。
b.高温腐蚀
温度达220℃时,原油中环烷酸(有机酸)随温度升高,活性越来越强。
a.工艺__措施
●注有机胺中和酸性环境,使其始终保持碱性或中性环境--三废装置。
●高温减压侧线:注高温缓蚀剂与设备内壁形成致密的保护膜,减少内壁与环烷酸的接触。
b.选用耐腐蚀金属材料
●选用1cr5mo可以在小限度下抵抗腐蚀,若装置中原油含酸量增大则无法抵抗。
c.其余易腐蚀部位:焊缝,塔底(电化学腐蚀),弯头(冲蚀:冲刷与腐蚀同时发生)。
d.腐蚀检测
六.橡胶一厂(顺丁橡胶合成装置)
关于橡胶:
_sbs(热塑性丁苯橡胶)_公路沥青内含有5-6%,使其耐磨、降噪、且夏天不化,冬天不裂。
_丁基橡胶_汽车轮胎的内胎,及吊瓶瓶塞。
_顺丁橡胶_汽车轮胎胎侧,具有弹性好的特点。
顺丁橡胶的合成装置共分五个部分,分别是抽提、聚合、凝聚、后处理和回收装置。总的操作流程为:原料c4---抽提装置---聚合装置---胶液罐储存---凝聚装置---后处理。由凝聚过程分离出的粗溶剂,先到罐区储存,在到回收装置进行回收,最后打回反应釜内再利用。
1.抽提装置
●抽提目的:顺丁橡胶、sbs等橡胶产品的原料均为聚合级丁二烯。但原料为多种碳四组分的混合物,由于碳四原料中大部分组分与丁二烯-1,3之间的沸点较为接近,而且相互之间有共沸物产生,这样采用一般的精馏方法很难进行分离开,所以为了得到目标产品(丁二烯)就必须采用特殊分离方法——萃取精馏。萃取精馏的原理就是:向被分离物料碳四原料中加入一种新的组分——萃取溶剂,它的加入使得原来物料中各组分之间的相对挥发度发生明显变化,从而使物料中难以用普通精馏方法分离的组分如:顺丁烯-2和反丁烯-2等组分在第一萃取精馏塔分离出来,乙基乙炔和乙烯基乙炔等组分在第二萃取精馏塔分离出来。抽提后的丁二烯浓度可达到99.5%以上。
共有两种抽提方法,分别为:dmf法和乙腈法。
a.dmf(二甲基甲酰胺)法: dmf法抽提丁二烯装置所用原料为化一裂解副产物碳四组分及炼油厂蒸馏装置生产的碳四组分,其中丁二烯含量在50%左右,产品为纯度达99.5%以上的聚合级丁二烯。
dmf抽提装置的主要构成:dmf抽提丁二烯装置可分为两个部分:萃取部分和精馏部分。萃取部分包括第一萃取精馏系统和第二萃取精馏系统,碳四原料中的丁烷、丁烯等在第一萃取精馏系统中脱除,乙烯基乙炔、一部分乙基乙炔等组分在第二萃取精馏系统中脱除;精馏部分包括丁二烯净化和溶剂精制两系统,除去其中的二甲胺、甲基乙炔、水、顺丁烯-2等杂质,得到丁二烯成品;而溶剂精制系统是将循环溶剂中的水分,二聚物等轻组分及焦油等重组分除去,保持循环溶剂的质量。