第1篇 初中数学知识点学习总结 4350字
初中数学知识点学习总结
基本知识
一、数与代数
a、数与式:
1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数
平方根:①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。
立方根:①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。
实数:①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:①同分母分式相加减,分母不变,把分子相加减。②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:①分母中含有未知数的方程叫分式方程。②使方程的分母为0的解称为原方程的增根。
b、方程与不等式
1、方程与方程组
一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(—b/2a,4ac—b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根x1={—b+√[b2—4ac)]}/2a,x2={—b—√[b2—4ac)]}/2a
3)解一元二次方程的步骤:
(1)配方法的步骤:
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤:
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=—b/a,二根之积=c/a
也可以表示为x1+x2=—b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2—4ac,这里可以分为3种情况:
i当△>;0时,一元二次方程有2个不相等的`实数根;
ii当△=0时,一元二次方程有2个相同的实数根;
iii当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:a>;b,a+c>;b+c
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:a>;b,a—c>;b—c
在不等式中,如果乘以同一个正数,不等号不改向;例如:a>;b,a*c>;b*c(c>;0)
在不等式中,如果乘以同一个负数,不等号改向;例如:a>;b,a*c如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数:①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。②当b=0时,称y是x的正比例函数。
一次函数的图象:①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数y=kx的图象是经过原点的一条直线。
③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。
二空间与图形
a、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②n棱柱就是底面图形有n条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。
②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。
②将线段向一个方向无限延长就形成了射线。射线只有一个端点。
③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:
①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。
②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。
③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。
②经过直线外一点,有且只有一条直线与这条直线平行。
③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。
②互相垂直的两条直线的交点叫做垂足。
③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
第2篇 初中数学学习方法归纳总结 2450字
相对于小学数学,初中数学学习内容有大幅度增加,课程难度也迅速提高,对学习方法、学习能力的要求自然也更高。同时数学水平的高低,直接影响到物理、化学等学科的学习,不仅如此,初中数学学习的好坏对于高中数学学习的好坏有着至关重要的影响,因此学好初中数学非常的重要。初中数学的学习有其独特的学习方法。
那怎样才能学好初中的数学呢?
1.细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学概念、公式的记忆。记忆是理解的基础。如果你不能将概念、公式烂熟于心,又怎能够在题目中熟练应用呢?
概念是数学的基石,对于每个定义、定理、公式法则,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的。将概念、公式与解题联系起来,以了解它们如何运用在题目中,从而将头脑中学来的概念具体化,加深对知识的理解,达到活学活用。
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2.看例题,做习题,要学会总结题型和方法
1)如何看例题、做习题?要想学好数学,必须多看例题,多做习题。我们看例题、做习题,目的是体会定义、定理、公式法则的运用,是学习数学的思想和方法。每一道题,都是针对一个或几个知识点,都会反映出一定的思维方法,即解题的思想方法。每看或做一道题目,都应体会如何应用数学知识,应理清它的思路,掌握它的思维方法。时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时再解这一类的题目时就易如反掌了。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小的变化就干瞪眼,无从下手。原因就在于不明白数学知识是怎么应用的,解题时是怎么思考的。
2)学会归纳和总结。题海无边,总也做不完。数学题目是无限的,但数学的思想和方法却是有限的。要想将题目越做越少,就要学会归纳和总结。
对做过的习题进行归纳和总结,再现思维活动经过,分析想法的产生及错因的由来。要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法。做了哪些习题?用到什么概念,定理或公式?用到什么解题方法?属于什么类型?哪些是自己能熟练解决的,哪些还有困难?会做的以后少做或不做,有困难的不会的要多做,重点做。
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
我们的建议是:看例题、做习题一是要体会定义、定理、公式法则的运用,从而记忆和巩固所学的定义、定理、法则、公式,二是要总结归纳解题的思路和方法,将题目越做越少。
3.收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。对于每次做错的题目,要分清楚是做错的还是不会做,对做错的,要分析原因,总结当时自己是怎么想的?错在哪里了?那么正确的思路又是什么?不会做的,要请教,然后把它记在本子上,并及时复习相关的内容。我们之所以建议大家收集自己的典型错误和不会的题目,一方面是可以查漏补缺,及时复习相关内容;另一方面,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。从而认清自己学习的状况。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4.就不懂的问题,积极提问、讨论
不提倡不懂就问,一发现现问题不经思考就问,不是好习惯。经过自己反复思考仍不能理解或解决的问题,应积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
5.注重实战(考试)经验的培养
考试是一种能力,也可以通过平时训练来获得。把“做作业”当成考试,平时做作业时,要不看书,不请教,在规定时间内独立完成;解题要规范,有条理,演算要清楚,整齐,避免出现计算错误。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
良好的学习方法的掌握,学习习惯的养成,都必须在平时每天的学习实践中加以训练和坚持。我们建议:家长应该变对考试成绩的期待为对整个学习过程(预习,听课,复习,做作业)具体的指导、监督和管理,逐步让学生掌握有效的学习方法,养成良好的学习习惯。从而提升学习能力,获得优良的成绩。
下面附上初中数学的知识结构体系图,希望这张图片可以帮助大家复习,这篇文章可以帮助初中的你们找到学习的方法。
第3篇 初中中考前数学学习方法总结 750字
导语中考前数学成绩的复习,认为以抓基础为主,在准确掌握基础的前提下,做做各年的中考考题,每道题都检验下自己能否说出所考的知识点,然后跟答案对一下,如果自己判断错误,翻开课本继续复习一遍遗漏或忘记的知识点。那么下面我们分步说下复习策略。
一、初中数学中考复习方法:
数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。
1.复习一定要做到勤
勤动手:做题不要看,一定要算,不会的知识点写下来,记在笔记本上。
勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。
勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。
勤动脑:善于思考问题,积极思考问题——吸收、储存信息
勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。
2.初中数学复习还要强调两个要点:
一要:动手,二要:动脑。
动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。
动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的经验。
3.用心做到三个一遍
上课要认真听一遍:听老师讲的方法知识等。
动手算一遍:按照老师的思路算一遍看看是否融会贯通。
认真想一遍:想想为什么这么做题,考的哪个知识。
4.重视简单的学习过程
读好一本教科书它是教学、中考的主要依据;
记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;
做好做净一本习题集它是使知识拓宽;
没有宝典神功,只有普普通通。最最难能可贵的是坚持。
第4篇 初中数学学习方法分享学习方法总结 2800字
初中数学学习方法分享 学习方法总结
数学学习方法总结
一、多看
主要是指认真阅读数学课本。把课本当成练习册。一般地,阅读可以分以下三个层次:
1。课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2。课堂阅读。预习时,只对所要学的教材内容有一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3。课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。 在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。 学习方法是灵活多样、因人而异的,能不断改进自己的.学习方法,是你学习能力不断提高的表现。
初中数学学习方法分享 学习方法总结
一:平时的数学学习:
1、课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.
2、让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.
3、课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.
4、单元测验是为了检测近期的学习情况.其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”.
二:期中期末数学复习:
要将平时的单元检测卷订成册,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍.另外,自己还可以做2-3张期末模拟卷.
三:数学考试技巧:
如果想得高分,在选择、填空、计算题上是不能丢分的.在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容.在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种.遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析,如这次考试有两个空白的钟,还有去年七年级期末的几题填空.这些条件都对你的解题有很大帮助.在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查.最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的.还要将所学的知识用到生活中去,做到学以致用.当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐.
初中数学学习方法分享 学习方法总结
学习数学方法一:课前预习:
一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。
学习数学方法二:课后复习:
同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。
学习数学方法三:涉猎课外习题:
想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。
学习数学方法四:记笔记:
这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。
学习数学方法五:学会归类总结:
学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率(因为公式都绑在一起了吗)。
学习数学方法六:建立纠错本:
我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。
学习数学方法七:写考试总结:
写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向。
学习数学方法八:培养学习兴趣:
又是一个老话题了,兴趣是最好的老师,只有有了兴趣,才会自主自发的进行学习,学习的效率才会提高。当然建立兴趣不是一件容易的事情,怎样才能对数学产生兴趣还需自己去发掘,如果实在不能产生兴趣,只有掌握以上学习方法了。
第5篇 初中数学学习方法总结 2150字
中学数学学习方法七要点:
要学好数学,要把握好以下几要点,对于数学的学习成绩的提高,自学能力的养成肯定有促进的。
(一)制定合理学习计划,及时检查落实。
1.制定符合自己的实际情况的学习计划。
2、要有明确的学习目标。通过一个阶段的学习,要达到什么水平,掌握那些知识等,这些都是在制定学习计划前应该非常明确。
3、长期目标和短期安排要相互结合好。应先制定长期计划,据此确定短期学习安排,来促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。
4、要合理安排计划。计划不能太古板,可根据执行过程中出现的新情况及时做适当调整。
5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学习目标。
(二)做好课前预习,提高听课效率。
通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先理解感知新课的内容(如概念、定义、公式、论证方法等),为顺利听懂新课扫除障碍。
1、预习的最佳时间是晚上的8:00到9:00这一段时间,单科的预习的时间一般控制在15分钟到30分钟左右。
2、课前预习:先看书做到:
一、粗读,先粗略浏览教材的有关内容,了解本节知识的概貌也就是大体内容。
二、细读,对重要概念、公式、
法则、定理反复阅读、体会、思考,注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。
(三)听好每一节课,解决疑点,吸纳新知。
耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调的语气,听老师对每节课的学习要求;听知识引人及知识形成过程;听懂重点、难点剖析(尤其是预习中的疑点);听例题解法的思路和数学思想方法的体现;听好每节课的小结。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,接受老师某种动作的提示、以及所要表达的思想。
心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。课堂上用心思考,跟上老师的教学思路,领会、分析老师是如何抓住重点,解决疑难。老师在讲例题时,在脑海中跟着老师,每一步都得自己想通。多思、勤思,随听随思;深思,即追根溯源地思考,大胆的提出问题;善思,由听和观察去联想、猜想、归纳;树立批判意识,学会反思。
口到:就是在老师的指导下,主动回答问题或参加讨论,也可避免走神。同时有利于知识的记忆。
手到:记笔记服从听讲,要掌握记录时机,就是在听、看、想、的基础上划出课文的重点,记下讲课的要点、疑问、记解题思路和方法以及自己的感受或有创新思维的见解、课前疑点的答、记小结、记课后思考题的分析。
笔记要有重点。记录形式多种多样可以在书上或笔记本上划线(直线、曲线)、圈点、作标记、使用不同颜色的笔(如红色就比较显眼)、记录的格式不同、书写的字体不同,这些都是记笔记的好方法。
(四)扎实搞好复习,减少遗忘。
当天上完课的课,必须做好当天的复习。不能只停留在一遍遍地看书或笔记,可以采取回忆式的复习:先把书,笔记合起来,回忆上课时老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写)尽量想得完整些。然后打开笔记与书本对照,看一下还有哪些没记清的,及时把它补记起来。同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
通过复习,把自己的想法,思路写成小结、列出图表、或者用提纲摘要的方法,把前后知识贯穿起来,形成一个完整的知识网。复习中遇到问题,要先想后看(问)。
做好单元复习。利用单元知识系统框架,采取回忆式复习。也要做好单元小节。本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案(如:错题本),应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(五)做好小结或总结,提升对知识的领悟。
在进行单元小结或学期总结时,做到:
一看:看书、看笔记、看习题。通过看,回忆、熟悉所学内容;
二列:列出相关的知识点的框架,标出重点、难点,列出各知识点之间的关系;
三做:有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
最后归纳出体现所学知识的各种题型及解题方法(倍速在章末有归纳)。学会总结是数学学习的最高层次。平时放学回家,坚持复习当天所学的内容,加深印象。并做相应的练习题以巩固上课所学的知识。
对所学知识系统地小结,具体如下:小结的频率:最好就是每周一次,将本周所学的知识进行系统归纳。小结的内容:可以把识记知识(如概念、公式等)系统化,也可以对题型作归纳,并附上自己的解题心得和注意事项等。当然可以参考章末小结。
(六)做练习题强化、巩固新的知识结构。
复习中要适当看点题、做点题。选的题要围绕复习的中心来选。在解题前,要先回忆一下过去做过的有关习题的解题思路,在这基础上再做题
(七)合理安排学习时间
要注意劳逸结合,这也是保证时间利用效率的一个重要方面,只有会休息的人才会工作。