第1篇 初中知识点总结一 1500字
一、基本概念:
1、化学变化:生成了其它物质的变
2、物理变化:没有生成其它物质的变化
3、物理性质:不需要发生化学变化就表现出来的性质
(如:颜色、状态、密度、气味、熔点、沸点、硬度、水溶性等)
4、化学性质:物质在化学变化中表现出来的性质
(如:可燃性、助燃性、氧化性、还原性、酸碱性、稳定性等)
5、纯净物:由一种物质组成
6、混合物:由两种或两种以上纯净物组成,各物质都保持原来的性质
7、元素:具有相同核电荷数(即质子数)的一类原子的总称
8、原子:是在化学变化中的最小粒子,在化学变化中不可再分
9、分子:是保持物质化学性质的最小粒子,在化学变化中可以再分
10、单质:由同种元素组成的纯净物
11、化合物:由不同种元素组成的纯净物
12、氧化物:由两种元素组成的化合物中,其中有一种元素是氧元素
13、化学式:用元素符号来表示物质组成的式子
14、相对原子质量:以一种碳原子的质量的1/12作为标准,其它原子的质量跟它比较所得的值
某原子的相对原子质量=
相对原子质量 ≈ 质子数 + 中子数 (因为原子的质量主要集中在原子核)
15、相对分子质量:化学式中各原子的相对原子质量的总和
16、离子:带有电荷的原子或原子团
17、原子的结构:
原子、离子的关系:
注:在离子里,核电荷数 = 质子数 ≠ 核外电子数
18、四种化学反应基本类型:(见文末具体总结)
①化合反应: 由两种或两种以上物质生成一种物质的反应
如:a + b = ab
②分解反应:由一种物质生成两种或两种以上其它物质的反应
如:ab = a + b
③置换反应:由一种单质和一种化合物起反应,生成另一种单质和另一种化合物的反应如:a + bc = ac + b
④复分解反应:由两种化合物相互交换成分,生成另外两种化合物的反应如:ab + cd = ad + cb
19、还原反应:在反应中,含氧化合物的氧被夺去的反应(不属于化学的基本反应类型)
氧化反应:物质跟氧发生的化学反应(不属于化学的基本反应类型)
缓慢氧化:进行得很慢的,甚至不容易察觉的氧化反应
自燃:由缓慢氧化而引起的自发燃烧
20、催化剂:在化学变化里能改变其它物质的化学反应速率,而本身的质量和化学性在化学变化前后都没有变化的物质(注:2h2o2 === 2h2o + o2 ↑ 此反应mno2是催化剂)
21、质量守恒定律:参加化学反应的各物质的质量总和,等于反应后生成物质的质量总和。
(反应的前后,原子的数目、种类、质量都不变;元素的种类也不变)
22、溶液:一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物
溶液的组成:溶剂和溶质。(溶质可以是固体、液体或气体;固、气溶于液体时,固、气是溶质,液体是溶剂;两种液体互相溶解时,量多的一种是溶剂,量少的是溶质;当溶液中有水存在时,不论水的量有多少,我们习惯上都把水当成溶剂,其它为溶质。)
23、固体溶解度:在一定温度下,某固态物质在100克溶剂里达到饱和状态时所溶解的质量,就叫做这种物质在这种溶剂里的溶解度
24、酸:电离时生成的阳离子全部都是氢离子的化合物
如:hcl==h+ + cl -
hno3==h+ + no3-
h2so4==2h+ + so42-
碱:电离时生成的阴离子全部都是氢氧根离子的化合物
如:koh==k+ + oh -
naoh==na+ + oh -
ba(oh)2==ba2+ + 2oh -
盐:电离时生成金属离子和酸根离子的化合物
如:kno3==k+ + no3-
na2so4==2na+ + so42-
bacl2==ba2+ + 2cl -
25、酸性氧化物(属于非金属氧化物):凡能跟碱起反应,生成盐和水的氧化物
碱性氧化物(属于金属氧化物):凡能跟酸起反应,生成盐和水的氧化物
26、结晶水合物:含有结晶水的物质(如:na2co3 .10h2o、cuso4 . 5h2o)
27、潮解:某物质能吸收空气里的水分而变潮的现象
风化:结晶水合物在常温下放在干燥的空气里,
能逐渐失去结晶水而成为粉末的现象
28、燃烧:可燃物跟氧气发生的一种发光发热的剧烈的氧化反应
燃烧的条件:①可燃物;②氧气(或空气);③可燃物的温度要达到着火点。
第2篇 初中数学因式分解的一般步骤知识点总结 650字
初中数学因式分解的一般步骤知识点总结
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的'公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
第3篇 初中数学无理数知识点总结 1500字
初中数学无理数知识点总结
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的`数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
第4篇 2023中考必读:初中生物知识点总结3 2200字
第七单元生物圈中生命的延续和发展
第一章生物的生殖和发育
一、植物的无性生殖和有性生殖二、昆虫的生殖和发育
1.完全变态:在由受精卵发育成新个体的过程中,幼虫与成体的结构和生活习性差异很大,这种发育过程叫完全变态发育.卵→幼虫→蛹→成虫。举例:家蚕、蜜蜂、蝶、蛾、蝇、蚊
2.不完全变态:卵→若虫→成虫。举例:蝗虫、蝉、蟋蟀、蝼蛄、螳螂
三、两栖动物的生殖和发育过程
1、青蛙发育过程:雄蛙鸣叫→雌雄蛙抱对→蛙的卵块(体外受精)→蝌蚪→青蛙
2、青蛙发育的四个时期:受精卵、蝌蚪、幼蛙、成蛙。
3、青蛙的幼体生活在水中,用鳃呼吸,成体生活在陆地,也能生活在水中,用肺呼吸,兼用皮肤辅助呼吸。
导致两栖动物分布范围和种类少的原因是:两栖动物的生殖和幼体发育必须生活在水中,幼体经变态发育才能上陆。
4、环境变化对两栖动物繁衍的影响:导致两栖动物生殖和繁育能力下降。出现畸形蛙的原因:水受到污染。
四、鸟类的生殖和发育过程
1、鸟卵的结构:胚盘里面含有细胞核。卵壳和壳膜--保护作用,卵白--营养和保护作用,卵黄--营养作用。胚盘--胚胎发育的场所。卵黄、卵黄膜、胚盘是一个卵细胞。
2、鸟类的生殖和发育过程:求偶、交配、筑巢、产卵、孵卵、育雏。
第二章生物的遗传和变异
一、基因控制生物的性状
1、遗传是指亲子间的相似性,变异是指亲子间和子代间的差异。生物的遗传和变异是通过生殖和发育而实现的;
2、性状:生物的形态结构、生理特征和行为方式。
人体常见的遗传性状:耳垂、舌头、眼皮、鼻尖、大拇指、酒窝。
3基因控制生物的性状。例:转基因超级鼠和小鼠。
4生物遗传下来的是基因而不是性状。
5、染色体、dna和基因的关系:基因是染色体上能够控制生物性状的dna片断,dan上有许多基因。在生物的体细胞(除生殖细胞外的细胞中)中,染色体成对存在,基因也是成对存在的。
二、生殖过程中染色体的变化三、基因在亲子代间的传递
基因经精子或卵细胞传递。精子和卵细胞是基因在亲子间传递的'桥梁'。亲代的基因通过生殖活动传给子代的。子代体细胞中的每一对染色体,都是一条来自父亲,一条来自母亲。由于基因在染色体上,因此,后代就具有了父母双方的遗传物质。
四、基因的显性和隐性
1、相对性状有显性和隐性之分。
2、隐性性状基因组成为:dd显性性状基因组称为:dd或dd
4.我国婚姻法规定:直系血亲和三代以内的旁系血亲之间禁止结婚。因为这样,后代换遗传病的几率加大。
五、人的性别遗传
1、人类的性别,一般是由性染色体决定的。性染色体有x染色体和y染色体,一对性染色体为xx时为女性,一对性染色体为xy时为男性。
2、女性排出一个含x染色体的卵细胞。精子的性染色体有两种,一种是含x染色体的,一种是含y染色体的。它们与卵细胞结合的机会均等。因此生男生女机会均等。
六、生物的变异
1.生物性状的变异是普遍存在的。变异首先决定于遗传物质基础的不同,其次与环境也有关系。因此有可遗传的变异和不遗传的变异。
2.人类应用遗传变异原理培育新品种例子:人工选择、杂交育种、太空育种(基因突变)
第三章生物的进化
一、地球上生命的起源:
了解生物进化的主要历程和总趋势
1、植物进化的历程
原始藻类?→原始藓类→原始蕨类→原始种子植物(先*子植物后被子植物)
2、动物进化的历程
原始单细胞动物→原始无脊椎动物(腔肠、扁形、线形、环节、软体、节肢)→古代的鱼类→两栖类→爬行类→鸟类、哺乳类
3、生物进化的总体趋势,是由简单到复杂、由低等到高等、由水生到陆生。
三、生物进化的原因
达尔文的自然选择学说:过度繁殖、生存斗争、遗传变异、适者生存
第八单元
一、传染病
1、引起传染病的病原体有:细菌、病毒、寄生虫等
传染病具有传染性、流行性
2、传染病流行的三个基本环节
(1)传染源指能够散播病原体的人或动物;
(2)传播途径如空气传播、饮食传播、生物媒介传播、接触传播等;
(3)易感人群指对某种传染病缺乏免疫力而容易感染该病的人群。
二、免疫
1.人体的三道防线:
2.抗体:病原体侵入人体后,刺激淋巴细胞产生的一种抵抗该病原体的特殊蛋白质。
3.抗原:引起人体产生抗体的物质(如病原体等)
4.特异性免疫与非特异性免疫
非特异性免疫(先天性免疫):生来就有的,对多种病原体发挥作用,如人体第一、二道防线
特异性免疫(后天性免疫):生活中逐渐建立的,针对某种特定病原体发挥作用,如人体第三道防线
5.免疫的功能:识别、监视、自我稳定
三、安全用药常识
(1)安全用药是指根据病情需要,在选择药物的品种、剂量和服用时间等方面都恰到好处,充分发挥药物的效果,尽量避免药物对人体所产生的不良反应或危害。
(2)药物可以分为处方药和非处方药。非处方药简称为otc,适于消费者容易自我诊断、自我治疗的小伤小病。
(3)使用任何药物之前,都应该仔细阅读使用说明,了解药物的主要成分、适应症、用法和用量、药品规格、注意事项、生产日期和有效期等,以确保用药安全。
4.120急救5.人工呼吸6.人工胸外心脏挤压
7.出血和止血:外出血,内出血,
四、健康
一、评价自己的健康状况
1.健康是指一种身体上、心理上和社会适应方面的良好状态.
2.保持愉快的心情:心情愉快是青少年心理健康的核心。
二、调节自己情绪的方法:转移注意力;选择合适的方式宣泄烦恼;自我安慰
二、选择健康的生活方式
1.生活方式对健康的影响:慢性、非传染性疾病除了受遗传因素和环境的影响外,还与个人的生活方式有关,不健康的生活方式加速这些疾病的发生和发展。
2.探究酒精或烟草浸出液对水蚤心率的影响:低浓度的酒精(<0.25%)对水蚤的心率有促进作用,高浓度的酒精对水蚤的心率有抑制作用。烟草浸出液对水蚤的心率有促进作用。
3.酗酒对人体健康的危害:酒精会损害人的心脏和血管,酗酒会全使脑处于过度兴奋或麻痹状态,引进神经衰弱和智力减退,长期酗酒,会造成酒精中毒,饮酒过多,还会有生命危险。
4.吸烟对人体健康的危害:烟草燃烧时,烟雾中的有害物质如尼古丁、焦油等有害物质进入人体,对人体的神经系统造成损害,使人的记忆力和注意力降低,同时还诱发多种呼吸系统疾病,如慢性支气管炎,肺癌等。
5.毒品的危害:会损害人的神经系统,降低人体免疫功能,使心肺受损,呼吸麻痹,甚至死亡。
第5篇 初中一年级数学知识点总结 2500字
一、知识框架
二.知识概念
1.有理数:
(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 >; 0,小数-大数 < 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题.
体验数学发展的一个重要原因是生活实际的需要.激发学生学习数学的兴趣,教师培养学生的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章 整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式,经历概念的形成过程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第三章 一元一次方程
一.知识框架
二.知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).
3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).
4.列一元一次方程解应用题:
(1)读题分析法:………… 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法: ………… 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间 ;
(2)工程问题: 工作量=工效·工时 ;
(3)比率问题: 部分=全体·比率 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题: 售价=定价·折· ,利润=售价-成本, ;
(6)周长、面积、体积问题:c圆=2πr,s圆=πr2,c长方形=2(a+b),s长方形=ab, c正方形=4a,
s正方形=a2,s环形=π(r2-r2),v长方体=abc ,v正方体=a3,v圆柱=πr2h ,v圆锥= πr2h.
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
第6篇 初中数学:单项式与多项式知识点总结 1800字
初中数学:单项式与多项式知识点总结
初中的同学们,初中要学的东西很多,学会总结熟悉的知识点很重要的哦,更多关于初中数学知识点的总结尽在。
初中数学重要概念:单项式与多项式
没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。如,=x, =│x│等。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的.掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
第7篇 初中数学知识点总结:圆 1150字
初中数学知识点总结:圆
初三学习的知识是初中三年学习的汇总,为了方便大家更好地复习,小编整理了初三数学关于圆的知识点,希望对大家的学习有所帮助。
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12.①直线l和⊙o相交 d
②直线l和⊙o相切 d=r
③直线l和⊙o相离 d>;r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的`直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>;r+r ②两圆外切 d=r+r
③.两圆相交 r-rr)
④.两圆内切 d=r-r(r>;r) ⑤两圆内含dr)
21.定理相交两圆的连心线垂直平分两圆的公共弦
22.定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24.正n边形的每个内角都等于(n-2)×180°/n
25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26.正n边形的面积sn=pnrn/2 p表示正n边形的周长
27.正三角形面积√3a/4 a表示边长
28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
29.弧长计算公式:l=n兀r/180
30.扇形面积公式:s扇形=n兀r^2/360=lr/2
31.内公切线长= d-(r-r) 外公切线长= d-(r+r)
32.定理 一条弧所对的圆周角等于它所对的圆心角的一半
33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
35.弧长公式 l=a*r a是圆心角的弧度数r >;0 扇形面积公式 s=1/2*l*r
第8篇 初中奥数数论问题期末复习知识点总结 500字
一、数论
1.奇偶性问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
2.位值原则
形如:abc=100a+10b+c
3.数的整除特征:
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的倍数
4.整除性质
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。
5.带余除法
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r
6.分解定理
任何一个大于1的自然数n都可以写成质数的连乘积,即
n=p1×p2×...×pk
7.约数个数与约数和定理
设自然数n的质因子分解式如n=p1×p2×...×pk那么:
n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1)
n的所有约数和:(1+p1+p1+…p1)(1+p2+p2+…p2)…(1+pk+pk+…pk)
第9篇 2023中考必读:初中生物知识点总结2 1950字
第四单元
39现代类人猿和人类的共同祖先是森林古猿。
40男性和女性生殖系统的结构和功能
男性:睾丸--产生精子,分泌雄性激素
女性:卵巢--产生卵细胞,分泌雌性激素
子宫--胚胎发育的场所,胎儿与母体物质交换的场所是胎盘
输卵管--受精的场所
41青春期的身体变化
(1)身高突增,神经系统以及心脏和肺等器官功能也明显增强。
(2)性器官迅速发育:男孩出现遗精,女孩会来月经。
42人体需要的主要营养物质
六类营养物质:糖类、脂肪、蛋白质、水、无机盐和维生素。
44人体消化系统的组成:
45食物的消化和营养物质的吸收过程
口腔糖类开始消化的地方唾液淀粉酶
胃蛋白质开始消化的地方胃蛋白酶
小肠糖类、蛋白质、脂肪都能消化消化糖类、脂肪、蛋白质的酶
46关注食品安全。
47人体呼吸系统的组成
呼吸系统由呼吸道和肺组成的。
47.肺泡与血液的气体交换:
48血液的成分和功能
49三种血管的结构和功能
血管种类概念和功能管壁
动脉送血离心管壁厚,弹性大,管内血液流速快
静脉送血回心管壁薄,弹性小,管内血液流慢
毛细血管连通于最少的动脉与静脉之间的血管,血液和细胞间物质交换的场所管壁薄,由一层上皮细胞构成,管内血液流速最慢
50心脏的结构和功能(p68图)
51人体的体循环和肺循环(p70图)
52区别动脉血和静脉血
53输血、血型和无偿献血
54人体泌尿系统的组成:肾脏(产生尿液)、输尿管、膀胱(暂存尿液)、尿道
55尿液的形成和排出过程。
56.眼球的结构和视觉的形成:
57.神经系统的组成和功能:
神经元是构成神经系统的结构和功能的基本单位,具有接受刺激、产生兴奋、传导兴奋的作用。58.神经调节的基本方式和反射弧的结构:
神经调节的基本方式是反射。反射的结构基础是反射弧,
59.人体内几种激素的作用:
外分泌腺:有导管唾液腺、汗腺
内分泌腺:直接进入血液循环垂体、甲状腺、胸腺、胰岛和性腺
(2)激素:由内分泌腺的腺细胞所分泌的,对身体有特殊调节作用的微量化学物质。
内分泌腺分泌激素作用症状
甲状腺甲状腺激素中枢神经系统的发育和功能,提高神经系统的兴奋性。呆小症、甲亢、地方性甲状腺肿
垂体生长激素促进骨的发育,调节生长发育。侏儒症、巨人症和肢端肥大症
胰岛胰岛素调节糖代谢,降低血糖浓度。糖尿病、低血糖症状
60.人类活动对生物的影响:
(1)乱砍滥伐,开垦草原,使生态环境遭受严重破坏,水土流失加重,还会引起沙尘暴。
(2)空气污染会形成酸雨。
(3)水污染会破坏水域生态系统。
(4)外来物种入侵会严重危害本地生物。
(5)人类活动也会改善生态环境。
第五单元
动物按有无脊柱,可分为脊椎动物和无脊椎动物两大类。动物已知150万种,其中昆虫100万多种,是种类最多的类群。
61.鱼类:靠尾部的摆动和鳍的协调游泳,躯干部和尾部的摆动产生前进的动力,胸鳍、腹鳍和背鳍维持鱼的平衡,尾鳍控制运动的方向;鳃是鱼的呼吸器官,鳃丝密布毛细血管,可吸收溶解在水中的氧气。卵生。变温动物。
腔肠动物:有口无肛门。如:海葵、海蜇、珊瑚虫等
软体动物:身体柔软靠贝壳来保护。如:章鱼、乌贼、河蚌、田螺等
甲壳动物:体表长有较硬的甲。如:虾、蟹、水蚤等
62.蚯蚓:1、生活在富含腐殖质的湿润的土壤中。2、以植物枯叶、朽根等为食。3、通过肌肉和刚毛的配合使身体蠕动(在粗糙纸上比玻璃板运动快);身体分节使躯体的运动更灵活。4、靠可以分泌黏液、始终保持湿润的体壁来呼吸。5、是环节动物,此类还有沙蚕、水蛭等
63.哺乳动物的主要特征:
体表被毛;牙齿有门齿、犬齿、臼齿的分化;体腔内有膈;用肺呼吸;心脏有四腔;体温恒定;大脑发达;多为胎生、哺乳。
兔与植食性相适应的特点:门齿(切断食物)、臼齿(磨碎食物)发达,无犬齿(撕裂食物),盲肠发达。
64.空中飞行的动物:
65.骨胳肌的结构和特性:
66.按照行为的获得方式可分为动物的先天性行为和学习行为:
67.动物在自然界中的作用:
第六单元
68.细菌的形态结构和生殖方式
69.霉菌和蘑菇的营养方式:细胞内没有叶绿体,利用现成有机物,从中获得生命活动所需要的物质和能量。
70.细菌和真菌的区别:细菌体内没有成形细胞核
真菌:细胞内有真正的细胞核,孢子生殖。
71.细菌和真菌在物质循环中的作用
72.微生物与人类生活:
73植物分类比较形态结构,被子植物中,花、果实、种子是重要依据。
动物分类比较形态结构、生理功能。
74、分类单位:界、门、纲、目、科、属、种。基本单位:种。
分类单位越大,包含生物类别越多,生物间的相似程度越低、亲缘关系越远;分类单位越小,则相反。
75、生物的多样性包括生物种类的多样性、基因的多样性(一个物种是一个基因库)和生态系统的多样性。种类多样性的实质是基因的多样性。我国是*子植物的故乡。苔藓、蕨类、种子植物居世界第三位。
76、生物多样性面临威胁的原因:滥砍乱伐、滥捕乱杀、环境污染、外来物种的入侵等。最有效措施是建立自然保护区。
77、保护生物的栖息环境,保护生态系统的多样性,是保护生物多样性的根本措施,建立自然保护区是保护生物多样性最为有效的措施。
第10篇 初中数学三角函数知识点总结 850字
初中数学三角函数知识点总结
锐角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的'锐角三角函数。
正弦(sin)等于对边比斜边;sina=a/c
余弦(cos)等于邻边比斜边;cosa=b/c
正切(tan)等于对边比邻边;tana=a/b
余切(cot)等于邻边比对边;cota=b/a
正割(sec)等于斜边比邻边;seca=c/b
余割(csc)等于斜边比对边。csca=c/a
互余角的三角函数间的关系
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
锐角三角函数公式
两角和与差的三角函数:
sin(a+b) = sinacosb+cosasinb
sin(a-b) = sinacosb-cosasinb ?
cos(a+b) = cosacosb-sinasinb
cos(a-b) = cosacosb+sinasinb
tan(a+b) = (tana+tanb)/(1-tanatanb)
tan(a-b) = (tana-tanb)/(1+tanatanb)
cot(a+b) = (cotacotb-1)/(cotb+cota)
cot(a-b) = (cotacotb+1)/(cotb-cota)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]si
第11篇 初中数学知识点的总结 1950字
有关初中数学知识点的总结
相似三角形—初中数学知识点总结
知识点精选:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。接下来导师为大家带来的是初中数学知识点总结之相似三角形,请大家认真记忆了。
相似三角形
判定定理1 :两角对应相等,两三角形相似(asa);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
判定定理3 三边对应成比例,两三角形相似(sss)
定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么 这两个直角三角形相似
性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
性质定理2 相似三角形周长的比等于相似比
性质定理3 相似三角形面积的比等于相似比的平方
上面的内容是初中数学知识点总结之相似三角形,相信同学们都已经熟记于心了吧。接下来还有更多更全的初中数学知识讯息尽在。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴或y轴统称为坐标轴,它们的公共原点o称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的'坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点c,过点c分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应点a,b分别叫做点c的横坐标、纵坐标,有序实数对(a,b)叫做点c的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。
初中数学知识点:因式分解的一般步骤
关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。
第12篇 初中英语知识点总结一 1500字
一、词类、句子成分和构词法:
1、词类:英语词类分十种:
名词、形容词、代词、数词、冠词、动词、副词、介词、连词、感叹词。
1、名词(n.): 表示人、事物、地点或抽象概念的名称。如:boy, morning, bag, ball, class, orange.
2、代词(pron.): 主要用来代替名词。如:who, she, you, it .
3、形容词(adj..):表示人或事物的性质或特征。如:good, right, white, orange .
4、数词(num.): 表示数目或事物的顺序。如:one, two, three, first, second, third, fourth.
5、动词(v.): 表示动作或状态。如:am, is,are,have,see .
6、副词(adv.): 修饰动词、形容词或其他副词,说明时间、地点、程度等。如:now, very, here, often, quietly, slowly.
7、冠词(art..):用在名词前,帮助说明名词。如:a, an, the.
8、介词(prep.): 表示它后面的名词或代词与其他句子成分的关系。如in, on, from, above, behind.
9、连词(conj.): 用来连接词、短语或句子。如and, but, before .
10、感叹词(interj..)表示喜、怒、哀、乐等感情。如:oh, well, hi, hello.
2、句子成分:英语句子成分分为七种:主语、谓语、宾语、定语、状语、表语、宾语补足语。
1、主语是句子所要说的人或事物,回答是“谁”或者“什么”。通常用名词或代词担任。如:i’m miss green.(我是格林小姐)
2、谓语动词说明主语的动作或状态,回答“做(什么)”。主要由动词担任。如:jack cleans the room every day. (杰克每天打扫房间)
3、表语在系动词之后,说明主语的身份或特征,回答是“什么”或者“怎么样”。通常由名词、代词或形容词担任。如:my name is ping ping .(我的名字叫萍萍)
4、宾语表示及物动词的对象或结果,回答做的是“什么”。通常由名词或代词担任。如:he can spell the word.(他能拼这个词)
有些及物动词带有两个宾语,一个指物,一个指人。指物的叫直接宾语,指人的叫间接宾语。间接宾语一般放在直接宾语的前面。如:he wrote me a letter . (他给我写了一封信)
有时可把介词to或for加在间接宾语前构成短语,放在直接宾语后面,来强调间接宾语。如:he wrote a letter to me . (他给我写了一封信)
5、定语修饰名词或代词,通常由形容词、代词、数词等担任。如:
shanghai is a big city .(上海是个大城市)
6、状语用来修饰动词、形容词、副词,通常由副词担任。如:he works hard .(他工作努力)
7、宾语补足语用来说明宾语怎么样或干什么,通常由形容词或动词充当。如:they usually keep their classroom clean.(他们通常让教室保持清洁) / he often helps me do my lessons.(他常常帮我做功课) / the teacher wanted me to learn french all by myself.(老师要我自学法语)
☆同位语通常紧跟在名词、代词后面,进一步说明它的情况。如:where is your classmate tom ?(你的同学汤姆在哪里?)
3、构词法:英语构词法主要有:合成法、派生法和转换法。
1、合成法:如:spaceship, headache, basketball, playground等等。
2、派生法:
(1)派生名词:①动词+er/or ②动词+ing ③动词+(t)ion ④形容词+ness ⑤其他,如:inventor, learner, swimming, congratulation, kindness, carelessness, knowledge
(2)派生形容词:①名词+y ②名词+ful ③动词+ing/ed ④friendly ⑤dangerous ⑥chinese; japanese ⑦english ⑧french ⑨german ⑩国名+(i)an 如:snowy, sunny, hopeful, beautiful, interesting, follwing, daily(每日的),nervous, delicious
(3)派生副词:①形容词+ly ②其它,如:slowly, angrily, full→fully, good→well, possible→possibly等等。
3、转换法:
(1)形容词→动词,如:dry(干燥的)→dry(弄干), clean(干净的)→clean(打扫,弄干净),等等。
(2)动词→名词,如:look, walk, rest, work, study, swim, go, talk等等。
(3)名词→动词,如:hand(手)→(传递),face(脸)→(面对)等等。
(4)形容词→副词,如:early→early, fast→fast等等。
(5)副词→连词,如:when(什么时候)→(当……时候),等等。
(6)介词→副词,如:in(到……里)→(在里面;在家),on(在…上)→(进行,继续),等等。
第13篇 2023年上半年初中数学基础知识点总结 4400字
一、数与代数a、数与式:1、有理数:①整数→正整数/0/负整数②分数→正分数/负分数
数轴
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。
绝对值
①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法
①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法
①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法
①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方:求n个相同因数a的积的运算叫做乘方,乘方的结果叫幂,a叫底数,n叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数 无理数:无限不循环小数叫无理数
平方根
①如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。
②如果一个数x的平方等于a,那么这个数x就叫做a的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数a的平方根运算,叫做开平方,其中a叫做被开方数。
立方根
①如果一个数x的立方等于a,那么这个数x就叫做a的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
③求一个数a的立方根的运算叫开立方,其中a叫做被开方数。
实数
①实数分有理数和无理数。
②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一样。
整式的乘法
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式
①整式a除以整式b,如果除式b中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法
①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
b、方程与不等式
1、方程与方程组
一元一次方程
①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。
解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。
二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。
解二元一次方程组的方法:代入消元法/加减消元法。
一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程
1)一元二次方程的二次函数的关系
大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与x轴的交点。也就是该方程的解了
2)一元二次方程的解法
大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程变为完全平方公式,在用直接开平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解
(3)公式法
这方法也可以是在解一元二次方程的万能方法了,方程的根x1={-b+√[b2-4ac)]}/2a,x2={-b-√[b2-4ac)]}/2a
3)解一元二次方程的步骤
(1)配方法的步骤
先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
(2)分解因式法的步骤
把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
(3)公式法
就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4)韦达定理
利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a
也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用
5)一元一次方程根的情况
利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况
i当△0时,一元二次方程有2个不相等的实数根;
ii当△=0时,一元二次方程有2个相同的实数根;
iii当△0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)
2、不等式与不等式组
不等式
①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集
①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组
①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向
在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:ab,a+cb+c
在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:ab,a-cb-c
在不等式中,如果乘以同一个正数,不等号不改向;例如:ab,a*cb*c(c0)
在不等式中,如果乘以同一个负数,不等号改向;例如:ab,a*c
如果不等式乘以0,那么不等号改为等号
所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;
3、函数
变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
一次函数
①若两个变量x,y间的关系式可以表示成y=kx+b(b为常数,k不等于0)的形式,则称y是x的一次函数。
②当b=0时,称y是x的正比例函数。
一次函数的图象
①把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数y=kx的图象是经过原点的一条直线。
③在一次函数中,当k〈0,b〈o,则经234象限;当k〈0,b〉0时,则经124象限;当k〉0,b〈0时,则经134象限;当k〉0,b〉0时,则经123象限。
④当k〉0时,y的值随x值的增大而增大,当x〈0时,y的值随x值的增大而减少。
一、理论学习使我得到了的知识在这两个月里,我系统学习了马克思主义基本理论、党史党建、行政法律、公共管理、经济理论、领导科学、wto知识、计算机等课程;学习了三个代表重要思想,更深领会其科学的思想内涵;学习了xx大以及xx届三中...
护士个人对照材料(一)根据医院、护理部党的群众路线教育实践活动统一部署,在教育实践活动查摆问题、开展批评环节当中,本人对照党章、廉政准则、改进作风要求、群众期盼、先进典型进行了五对照剖析,现将剖析材料总结一、自身存在...
初中物理学习记忆方法总结...
多数高三学生都参加了月考,正是这一次小小的考试,打乱了很多学生复习节奏,这几天也见了一些学生和家长,从和他们的交流来看,多数人对月考成绩非常重视。因此很多学生整个假期都想着月考的事情,有的期待,是心里没有底气。
党的作风建设是党的性质、宗旨、纲领、路线的重要体现,是党员世界观、人生观、价值观的外在表现。所以,党的作风建设是关系我们党和国家生死存亡的大事。
xx年,党政办公室在镇党委、镇人大、镇政府的正确领导下,在机关各部门的大力支持下,按照实现一个目标(工作创一流)、提升两个水平(着力提升政务服务水平和后勤服务水平)、建立三大机制(构建应急信息管理机制、督查督办机制、综合协调机制...
这次先来总结的实习内容是品牌部的视频设计。看着总监大致上是走这个流程的客户要求点整理,策划。我尚未参加策划部分。制定故事台本,和客户反馈,基本上每一步都最好及时反馈,不然就是白用功,这是老板得出的结论。
第14篇 初中三年级数学知识点总结人教版 550字
1.物体的表面或封闭图形的大小,就是他们的面积。
2.比较两个图形面积的大小,要用统一的面积单位来测量。
3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。
4.边长1厘米的正方形面积是1平方厘米。
5.边长1分米的正方形面积是1平方分米。
6.边长1米的正方形面积是1平方米。
7.边长100米的正方形面积是1公顷(10000平方米)。
8.边长1千米(1000米)的正方形面积是1平方千米。
9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。
平方千米 公顷 平方米 平方分米 平方厘米
10.长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长
11.正方形的面积=边长×边长
12.长方形的周长=(长+宽)×2 宽 = 周长÷2-长 长 = 周长÷2-宽
13.正方形的周长=边长×4
14.正方形的边长=周长÷4
15.相邻的两个常用的长度单位间的进率是10。
16.相邻的两个常用的面积单位间的进率是100。
17.1平方米=100平方分米 ;1平方分米=100平方厘米 ;
1公顷=10000平方米 ;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)
注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。
面积相等的两个图形,周长不一定相等。
注 意:
周长相等的两个图形,面积不一定相等。
第15篇 初中数学棱锥的知识点总结 600字
初中数学棱锥的知识点总结
棱锥的底面知识要点:棱锥中的多边形叫做棱锥的底面。如下图中的面abcd就是棱锥的底面。
1.棱锥的概念
棱锥的侧面: 棱锥中除底面以外的各个面都叫做棱锥的侧面。如图中的面pab、面pcd等都是棱锥的侧面。
棱锥的侧棱: 相邻侧面的公共边叫做棱锥的侧棱。如图中pa、pb等都是棱锥的侧棱。
棱锥的顶点; 棱锥中各个侧面的公共顶点叫做棱锥的`顶点。如图中p是各个侧面的公共顶点,p是棱锥的顶点。
棱锥的高: 棱锥的顶点到底面的距离叫做棱锥的高。如图中,若po⊥底面abcd,垂足是o,那么po就是棱锥的高。
2.棱锥的两个特征
棱锥是多面体中重要的一种,它有两个本质特征:①有一个面是多边形;②其余的各面是有一个公共顶点的三角形,二者缺一不可。因此棱锥有一个面是多边形,其余各面都是三角形。但是也要注意“有一个面是多边形,其余各面都是三角形”的几何体未必是棱锥。
3.棱锥的分类
棱锥的底面可以是三角形、四边形、五边形……我们把这样的棱锥分别叫做三棱锥、四棱锥、五棱锥……
4.正棱锥
如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。如图,若棱锥p-ac的底面是正多边形,且po底面ac,o为垂足,o是正多边形的中心,则棱锥p-ac是正棱锥。(如图)
正棱锥的斜高:正棱锥侧面等腰三角形底边上的高,叫做正棱锥的斜高。
知识要领总结:棱锥中过不相邻的两条侧棱的截面叫做对角面。